ExoSparkler Exosome Membrane Labeling Kit-Deep Red试剂盒货号:EX03

ExoSparkler Exosome Membrane Labeling Kit-Deep Red试剂盒货号:EX03
外泌体膜染色试剂-深红色
ExoSparkler Exosome Membrane Labeling Kit-Deep Red
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 特异性外泌体定位,细胞外不聚集

● 回收率高

● 多种颜色可供选择

选择规格:
5samples

凑单关联产品TOP5

NO.1.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.2.    Carboxylic acid-SAM Formation Reagent     自组装单分子膜SAM

NO.3.    Cell Counting Kit-8     细胞增殖毒性检测

NO.4.    Cellstain- DAPI solution    细胞核染色

NO.5.    ExoSparkler Exosome Membrane Labeling Kit-Green    外泌体膜染色试剂-绿色

 

试剂盒内含

1608253239422061.png

概述

近年来研究发现,外泌体作为细胞外囊泡(Extracellular vesicle; EV)的一种,与癌症的恶化与转移密切相关, 外泌体相关的研究也逐渐成为了关注的热点。为了研究通过外泌体的细胞间通信,细胞摄入外泌体时的示踪技术非常重要,然而目前广泛使用的磷脂双分子层的荧光染料存在明显的缺点(1. 染色后外泌体粒径增大。2. 荧光染料自身形成粒子,造成背景增高)。本产品是为了解决这些问题而开发的新型荧光染料,并且有 Green, Red, Deep Red 三种颜色,可满足多重染色在内的各种实验需求。

1609231173920794.png

技术情报

 

更准确地观察外泌体的动态

常用于染色外泌体的膜染色染料(S公司 产品P),染料本身会引起凝集,产生不来源于外泌体的荧光聚点,导致外泌体的性质变化和背景上升等问题1)2)

ExoSparkler系列中使用的染料(Mem Dye-Green,Red,Deep Red)不会引起荧光凝集,也几乎不影响外泌体的性质,因此可以更准确地观察外来体的动力学。

参考文献

1) Mehdi Dehghani et al.,“Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.

2) Pužar Dominkuš P et al.,“PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.”Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.

特点

特点1:荧光染料不会在细胞外聚集

将使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色的外泌体添加到HeLa细胞中,并用荧光显微镜观察进入细胞内的外泌体。

结果,在用产品P(绿色或红色)染色的外泌体中,发现了疑似染料聚集的细胞外荧光亮点。

1622171744915028.png

Mem Dye-Deep Red(紫):Ex: 640 nm/ Em: 640-760 nm

S公司 P产品(绿):Ex: 561 nm/ Em: 560-620 nm

S公司 P产品(红):Ex: 640 nm/ Em: 650-700 nm

实验条件

通过超速离心法提取的外泌体(蛋白质量为10 µg),使用不同荧光染料染色后,添加到HeLa细胞(1.25×104cells)中,孵育24小时,观察清洗后的荧光图像。

通过NTA (Nanoparticle Tacking Analysis)技术检测发现,Dojindo的Mem Dye-Deep Red没有荧光聚集现象,而P产品(绿色或红色)发现了可疑的100-500 nm粒径的粒子。

1612746070564831.png

*检测装置:LM10-HSBFT 14(Nanosight公司生产)

与Mem-Dye溶液相比,P产品溶液的粒径也发生变化

另外,Mem Dye-Green, Red和Mem Dye-Deep Red一样,也没有发现荧光聚集的现象。

特点2:对外泌体的性质几乎没有影响

比较使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色前后的外泌体,通过测定NTA(纳米粒子跟踪分析)和zeta电位以确认外泌体的性质是否变化。

结果,确认使用产品P(绿色或红色)会因染色而引起的外泌体的变化。

而Mem-Dye系列(Green、Red、Deep Red)对外泌体的性质几乎没有影响。

对外泌体颗粒直径的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,对10 µg(蛋白质量)的外泌体进行染色后进行了NTA(纳米粒子跟踪分析)。

结果,用Mem-Dye系列染色的外泌体与未染色的外泌体,粒子数以及粒子直径几乎没有影响(下图左),但在产品P染色前后,粒子数和粒子直径有明显的变化(下图右)。

1607063170217372.png

*检测装置:LM10-HSBFT 14 (Nanosight公司生产)

对外泌体膜电位的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,并对10 µg(蛋白质含量)的外泌体进行染色后测定Zeta电位。

结果证实,使用Mem-Dye系列染色与使用产品P染色比较,使用Mem-Dye引起的Zeta电位变化会小很多

1622171794119494.png

*检测装置:Zetasizer Nano ZSP(Malvern Panalytical公司生产)

参考文献

Takashi Shimomura et al., “New Lipophilic Fluorescent Dyes for Exosome Labeling: Monitoring of Cellular Uptake of Exosomes”.bioRxiv., 2020, doi:10.1101/2020.02.02.931295.

特点3:外泌体的标记和纯化一步到位

ExoSparkler系列已经对外泌体标记的最佳条件进行摸索并做成了操作手册,试剂盒内包含纯化所需的过滤管,可以简单快捷的进行外泌体的标记和纯化。

1622171829257255.png

纯化方法(未反应染料的去除)的比较

ExoSparklar系列中用于除去未反应染料的过滤管,与以往使用的相同用途的凝胶过滤法相比,能够以更高的回收率纯化外泌体。

回收率
过滤管(本试剂盒) 50%
凝胶过滤法 10%
   ※本公司的实施例:通过NTA技术(纳米颗粒跟踪分析)比较提取前后的外泌体粒子数

关于使用过滤管进行纯化的有效性,常见问题是:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?详见Q&A。

特点4:多种颜色选择 

ExoSparkler系列包括膜 (Mem Dye)和蛋白质 (Protein Dye)荧光染色试剂,各三种颜色 (Green, Red, Deep Red)。

■实验条件

超速离心法纯化的外泌体(蛋白质的量为10 μg)经过各试剂染色后,与HeLa细胞(1.25×104 cells)一起培养24 h,清洗后进行荧光观察。

1609205888848779.png

■观察条件

Green: Ex: 488 nm / Em: 490-540 nm

Red: Ex: 561 nm / Em: 570-640 nm

Deep Red: Ex: 640 nm / Em: 640-760 nm

 

产品名称 容量 货号
外泌体膜荧光染色试剂盒
(绿色)ExoSparkler Exosome Membrane Labeling Kit-Green 5 samples EX01
(红色)ExoSparkler Exosome Membrane Labeling Kit-Red 5 samples EX02
(深红色)ExoSparkler Exosome Membrane Labeling Kit-Deep Red 5 samples EX03
外泌体蛋白荧光染色试剂盒
(绿色)ExoSparkler Exosome Protein Labeling Kit-Green 5 samples EX04
(红色)ExoSparkler Exosome Protein Labeling Kit-Red 5 samples EX05
(深红色)ExoSparkler Exosome Protein Labeling Kit-Deep Red 5 samples EX06
*纯化的外泌体(超离心法),蛋白质:1-10 µg/sample,粒子数:10-100×10^8个/sample

实验例

外泌体的定位随时间而变化

■实验条件

通过超速离心法纯化的外泌体(蛋白质量为10 µg)用Mem Dye-Deep Red(外泌体膜染色试剂)染色,并加入到用溶酶体染色试剂染色的HeLa细胞(1.25×104细胞)中,在1小时和4小时后观察到荧光图像。

结果表明,随着时间的推移Mem Dye-Deep Red的荧光点(紫色)与溶酶体的定位(绿色)重叠(白色),外泌体的定位随时间的变化而变化。

image.png

观察条件:

Mem Dye-Deep Red:Ex 640 nm / Em 640 – 760 nm

溶酶体染色试剂: Ex 488 nm / Em 490 – 540 nm

常见问题Q&A

Q1:纯化外泌体建议用什么方法?
A1:一般我们推荐使用超速离心法纯化外泌体。但是,免疫沉淀法和磁珠法纯化的外泌体也有过成功染色的实例。
目前,聚合物沉淀法纯化的外泌体由于有聚合物的残留会影响外泌体的染色,所以无法使用本试剂盒。
Q2:细胞摄取外泌体时使用的是哪种培养基?
A2:我们公司在做染色后外泌体进入细胞的实验时,使用过MEM(Minimum Essential Medium)和DMEM(Dulbecco’s Modified Eagle’s Medium)。目前我们公司一直采用的含血清培养基进行外泌体实验,暂时无法推荐无血清培养基。
Q3:染色后的外泌体可以长期保存吗?
A3:染色后的外泌体不建议长期保存。染色后的外泌体最好尽快进行后续实验。
Q4:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?
A5:虽然在过滤膜上可以观察到颜色的残留,但是我们公司通过下面的实验验证了过滤膜上的回收产物里不含未反应的染料。
<实验条件>
超速离心法纯化的①含有外泌体(蛋白质含量10 µg)的缓冲液和②单纯缓冲液,分别按照试剂盒说明书记载的步骤进行染色操作。染色后的产物加入到HeLa细胞中(1.25×10cells),4小时后进行荧光观察。
结果显示,单纯缓冲液染色后的回收产物加入到细胞后,没有观察到荧光,进而可证明回收产物中没有残留的染料。

1612746388147427.png

① Exosome + Buffer

1612746422773616.png

② Only Buffer

1612746443715005.png

Fluorescent images at 4 h incubation

Detection conditions

Green:Ex 488 nm / Em 490 – 540 nm

Red :Ex 561 nm / Em 570 – 640 nm

Deep Red:Ex 640 nm / Em 640 – 760 nm

ExoSparkler Exosome Membrane Labeling Kit-Red试剂盒货号:EX02

ExoSparkler Exosome Membrane Labeling Kit-Red试剂盒货号:EX02
外泌体膜染色试剂-红色
ExoSparkler Exosome Membrane Labeling Kit-Red
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 特异性外泌体定位,细胞外不聚集

● 回收率高

● 多种颜色可供选择

选择规格:
5samples

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.3.    Calcein-AM/PI Double Staining Kit    活死细胞双染

NO.4.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.5.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

 

试剂盒内含

1608253180250841.png

概述

近年来研究发现,外泌体作为细胞外囊泡(Extracellular vesicle; EV)的一种,与癌症的恶化与转移密切相关, 外泌体相关的研究也逐渐成为了关注的热点。为了研究通过外泌体的细胞间通信,细胞摄入外泌体时的示踪技术非常重要,然而目前广泛使用的磷脂双分子层的荧光染料存在明显的缺点(1. 染色后外泌体粒径增大。2. 荧光染料自身形成粒子,造成背景增高)。本产品是为了解决这些问题而开发的新型荧光染料,并且有 Green, Red, Deep Red 三种颜色,可满足多重染色在内的各种实验需求。

1609231173920794.png

技术情报

更准确地观察外泌体的动态

常用于染色外泌体的膜染色染料(S公司 产品P),染料本身会引起凝集,产生不来源于外泌体的荧光聚点,导致外泌体的性质变化和背景上升等问题1)2)

ExoSparkler系列中使用的染料(Mem Dye-Green,Red,Deep Red)不会引起荧光凝集,也几乎不影响外泌体的性质,因此可以更准确地观察外来体的动力学。

参考文献

1) Mehdi Dehghani et al.,“Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.

2) Pužar Dominkuš P et al.,“PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.”Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.

特点

特点1:荧光染料不会在细胞外聚集

将使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色的外泌体添加到HeLa细胞中,并用荧光显微镜观察进入细胞内的外泌体。

结果,在用产品P(绿色或红色)染色的外泌体中,发现了疑似染料聚集的细胞外荧光亮点。

1622171414674867.png

Mem Dye-Deep Red(紫):Ex: 640 nm/ Em: 640-760 nm

S公司 P产品(绿):Ex: 561 nm/ Em: 560-620 nm

S公司 P产品(红):Ex: 640 nm/ Em: 650-700 nm

实验条件

通过超速离心法提取的外泌体(蛋白质量为10 µg),使用不同荧光染料染色后,添加到HeLa细胞(1.25×104cells)中,孵育24小时,观察清洗后的荧光图像。

通过NTA (Nanoparticle Tacking Analysis)技术检测发现,Dojindo的Mem Dye-Deep Red没有荧光聚集现象,而P产品(绿色或红色)发现了可疑的100-500 nm粒径的粒子。

1612746070564831.png

*检测装置:LM10-HSBFT 14(Nanosight公司生产)

与Mem-Dye溶液相比,P产品溶液的粒径也发生变化

另外,Mem Dye-Green, Red和Mem Dye-Deep Red一样,也没有发现荧光聚集的现象。

特点2:对外泌体的性质几乎没有影响

比较使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色前后的外泌体,通过测定NTA(纳米粒子跟踪分析)和zeta电位以确认外泌体的性质是否变化。

结果,确认使用产品P(绿色或红色)会因染色而引起的外泌体的变化。

而Mem-Dye系列(Green、Red、Deep Red)对外泌体的性质几乎没有影响。

对外泌体颗粒直径的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,对10 µg(蛋白质量)的外泌体进行染色后进行了NTA(纳米粒子跟踪分析)。

结果,用Mem-Dye系列染色的外泌体与未染色的外泌体,粒子数以及粒子直径几乎没有影响(下图左),但在产品P染色前后,粒子数和粒子直径有明显的变化(下图右)。

1607063170217372.png

*检测装置:LM10-HSBFT 14 (Nanosight公司生产)

对外泌体膜电位的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,并对10 µg(蛋白质含量)的外泌体进行染色后测定Zeta电位。

结果证实,使用Mem-Dye系列染色与使用产品P染色比较,使用Mem-Dye引起的Zeta电位变化会小很多

1622171457123627.png

*检测装置:Zetasizer Nano ZSP(Malvern Panalytical公司生产)

参考文献

Takashi Shimomura et al., “New Lipophilic Fluorescent Dyes for Exosome Labeling: Monitoring of Cellular Uptake of Exosomes”.bioRxiv., 2020, doi:10.1101/2020.02.02.931295.

特点3:外泌体的标记和纯化一步到位

ExoSparkler系列已经对外泌体标记的最佳条件进行摸索并做成了操作手册,试剂盒内包含纯化所需的过滤管,可以简单快捷的进行外泌体的标记和纯化。

1622171493573354.png

纯化方法(未反应染料的去除)的比较

ExoSparklar系列中用于除去未反应染料的过滤管,与以往使用的相同用途的凝胶过滤法相比,能够以更高的回收率纯化外泌体。

回收率
过滤管(本试剂盒) 50%
凝胶过滤法 10%
   ※本公司的实施例:通过NTA技术(纳米颗粒跟踪分析)比较提取前后的外泌体粒子数

关于使用过滤管进行纯化的有效性,常见问题是:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?详见Q&A。

特点4:多种颜色选择 

ExoSparkler系列包括膜 (Mem Dye)和蛋白质 (Protein Dye)荧光染色试剂,各三种颜色 (Green, Red, Deep Red)。

■实验条件

超速离心法纯化的外泌体(蛋白质的量为10 μg)经过各试剂染色后,与HeLa细胞(1.25×104 cells)一起培养24 h,清洗后进行荧光观察。

1609205888848779.png

■观察条件

Green: Ex: 488 nm / Em: 490-540 nm

Red: Ex: 561 nm / Em: 570-640 nm

Deep Red: Ex: 640 nm / Em: 640-760 nm

 

产品名称 容量 货号
外泌体膜荧光染色试剂盒
(绿色)ExoSparkler Exosome Membrane Labeling Kit-Green 5 samples EX01
(红色)ExoSparkler Exosome Membrane Labeling Kit-Red 5 samples EX02
(深红色)ExoSparkler Exosome Membrane Labeling Kit-Deep Red 5 samples EX03
外泌体蛋白荧光染色试剂盒
(绿色)ExoSparkler Exosome Protein Labeling Kit-Green 5 samples EX04
(红色)ExoSparkler Exosome Protein Labeling Kit-Red 5 samples EX05
(深红色)ExoSparkler Exosome Protein Labeling Kit-Deep Red 5 samples EX06
*纯化的外泌体(超离心法),蛋白质:1-10 µg/sample,粒子数:10-100×10^8个/sample

常见问题Q&A

Q1:纯化外泌体建议用什么方法?
A1:一般我们推荐使用超速离心法纯化外泌体。但是,免疫沉淀法和磁珠法纯化的外泌体也有过成功染色的实例。
目前,聚合物沉淀法纯化的外泌体由于有聚合物的残留会影响外泌体的染色,所以无法使用本试剂盒。
Q2:细胞摄取外泌体时使用的是哪种培养基?
A2:我们公司在做染色后外泌体进入细胞的实验时,使用过MEM(Minimum Essential Medium)和DMEM(Dulbecco’s Modified Eagle’s Medium)。目前我们公司一直采用的含血清培养基进行外泌体实验,暂时无法推荐无血清培养基。
Q3:染色后的外泌体可以长期保存吗?
A3:染色后的外泌体不建议长期保存。染色后的外泌体最好尽快进行后续实验。
Q4:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?
A5:虽然在过滤膜上可以观察到颜色的残留,但是我们公司通过下面的实验验证了过滤膜上的回收产物里不含未反应的染料。
<实验条件>
超速离心法纯化的①含有外泌体(蛋白质含量10 µg)的缓冲液和②单纯缓冲液,分别按照试剂盒说明书记载的步骤进行染色操作。染色后的产物加入到HeLa细胞中(1.25×10cells),4小时后进行荧光观察。
结果显示,单纯缓冲液染色后的回收产物加入到细胞后,没有观察到荧光,进而可证明回收产物中没有残留的染料。

1612746388147427.png

① Exosome + Buffer

1612746422773616.png

② Only Buffer

1612746443715005.png

Fluorescent images at 4 h incubation

Detection conditions

Green:Ex 488 nm / Em 490 – 540 nm

Red :Ex 561 nm / Em 570 – 640 nm

Deep Red:Ex 640 nm / Em 640 – 760 nm

ExoSparkler Exosome Membrane Labeling Kit-Green试剂盒货号:EX01

ExoSparkler Exosome Membrane Labeling Kit-Green试剂盒货号:EX01
外泌体膜染色试剂-绿色
ExoSparkler Exosome Membrane Labeling Kit-Green
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 特异性外泌体定位,细胞外不聚集

● 回收率高

● 多种颜色可供选择

选择规格:
5 samples

 

凑单关联产品TOP5

NO.1.    ExoSparkler Exosome Membrane Labeling Kit-Red    外泌体膜染色试剂-红色

NO.2.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

NO.3.    ExoSparkler Exosome Membrane Labeling Kit-Deep Red    外泌体膜染色试剂-深红色

NO.4.    ExoSparkler Exosome Protein Labeling Kit-Green    外泌体蛋白质染色-绿色

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

 

试剂盒内含

1609230739573679.jpg

概述

近年来研究发现,外泌体作为细胞外囊泡(Extracellular vesicle; EV)的一种,与癌症的恶化与转移密切相关, 外泌体相关的研究也逐渐成为了关注的热点。为了研究通过外泌体的细胞间通信,细胞摄入外泌体时的示踪技术非常重要,然而目前广泛使用的磷脂双分子层的荧光染料存在明显的缺点(1. 染色后外泌体粒径增大。2. 荧光染料自身形成粒子,造成背景增高)。本产品是为了解决这些问题而开发的新型荧光染料,并且有 Green, Red, Deep Red 三种颜色,可满足多重染色在内的各种实验需求。

1609231173920794.png

技术情报

更准确地观察外泌体的动态

常用于染色外泌体的膜染色染料(S公司 产品P),染料本身会引起凝集,产生不来源于外泌体的荧光聚点,导致外泌体的性质变化和背景上升等问题1)2)

ExoSparkler系列中使用的染料(Mem Dye-Green,Red,Deep Red)不会引起荧光凝集,也几乎不影响外泌体的性质,因此可以更准确地观察外来体的动力学。

参考文献

1) Mehdi Dehghani et al.,“Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.

2) Pužar Dominkuš P et al.,“PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.”Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.

特点

特点1:荧光染料不会在细胞外聚集

将使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色的外泌体添加到HeLa细胞中,并用荧光显微镜观察进入细胞内的外泌体。

结果,在用产品P(绿色或红色)染色的外泌体中,发现了疑似染料聚集的细胞外荧光亮点。

1622171057254150.png

Mem Dye-Deep Red(紫):Ex: 640 nm/ Em: 640-760 nm

S公司 P产品(绿):Ex: 561 nm/ Em: 560-620 nm

S公司 P产品(红):Ex: 640 nm/ Em: 650-700 nm

实验条件

通过超速离心法提取的外泌体(蛋白质量为10 µg),使用不同荧光染料染色后,添加到HeLa细胞(1.25×104cells)中,孵育24小时,观察清洗后的荧光图像。

通过NTA (Nanoparticle Tacking Analysis)技术检测发现,Dojindo的Mem Dye-Deep Red没有荧光聚集现象,而P产品(绿色或红色)发现了可疑的100-500 nm粒径的粒子。

1612746070564831.png

*检测装置:LM10-HSBFT 14(Nanosight公司生产)

与Mem-Dye溶液相比,P产品溶液的粒径也发生变化

另外,Mem Dye-Green, Red和Mem Dye-Deep Red一样,也没有发现荧光聚集的现象。

特点2:对外泌体的性质几乎没有影响

比较使用Mem Dye-Deep Red和使用产品P(绿色或红色)染色前后的外泌体,通过测定NTA(纳米粒子跟踪分析)和zeta电位以确认外泌体的性质是否变化。

结果,确认使用产品P(绿色或红色)会因染色而引起的外泌体的变化。

而Mem-Dye系列(Green、Red、Deep Red)对外泌体的性质几乎没有影响。

对外泌体颗粒直径的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,对10 µg(蛋白质量)的外泌体进行染色后进行了NTA(纳米粒子跟踪分析)。

结果,用Mem-Dye系列染色的外泌体与未染色的外泌体,粒子数以及粒子直径几乎没有影响(下图左),但在产品P染色前后,粒子数和粒子直径有明显的变化(下图右)。

1607063170217372.png

*检测装置:LM10-HSBFT 14 (Nanosight公司生产)

对外泌体膜电位的影响

制备Mem-Dye系列(Green、Red、Deep Red)以及产品P(绿色、红色)的10 µmol/l DMSO溶液,并对10 µg(蛋白质含量)的外泌体进行染色后测定Zeta电位。

结果证实,使用Mem-Dye系列染色与使用产品P染色比较,使用Mem-Dye引起的Zeta电位变化会小很多

1622171156841035.png

*检测装置:Zetasizer Nano ZSP(Malvern Panalytical公司生产)

参考文献

Takashi Shimomura et al., “New Lipophilic Fluorescent Dyes for Exosome Labeling: Monitoring of Cellular Uptake of Exosomes”.bioRxiv., 2020, doi:10.1101/2020.02.02.931295.

特点3:外泌体的标记和纯化一步到位

ExoSparkler系列已经对外泌体标记的最佳条件进行摸索并做成了操作手册,试剂盒内包含纯化所需的过滤管,可以简单快捷的进行外泌体的标记和纯化。

1622171185251092.png

纯化方法(未反应染料的去除)的比较

ExoSparklar系列中用于除去未反应染料的过滤管,与以往使用的相同用途的凝胶过滤法相比,能够以更高的回收率纯化外泌体。

回收率
过滤管(本试剂盒) 50%
凝胶过滤法 10%
   ※本公司的实施例:通过NTA技术(纳米颗粒跟踪分析)比较提取前后的外泌体粒子数

关于使用过滤管进行纯化的有效性,常见问题是:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?详见Q&A。

特点4:多种颜色选择 

ExoSparkler系列包括膜 (Mem Dye)和蛋白质 (Protein Dye)荧光染色试剂,各三种颜色 (Green, Red, Deep Red)。

■实验条件

超速离心法纯化的外泌体(蛋白质的量为10 μg)经过各试剂染色后,与HeLa细胞(1.25×104 cells)一起培养24 h,清洗后进行荧光观察。

1609205888848779.png

■观察条件

Green: Ex: 488 nm / Em: 490-540 nm

Red: Ex: 561 nm / Em: 570-640 nm

Deep Red: Ex: 640 nm / Em: 640-760 nm

 

产品名称 容量 货号
外泌体膜荧光染色试剂盒
(绿色)ExoSparkler Exosome Membrane Labeling Kit-Green 5 samples EX01
(红色)ExoSparkler Exosome Membrane Labeling Kit-Red 5 samples EX02
(深红色)ExoSparkler Exosome Membrane Labeling Kit-Deep Red 5 samples EX03
外泌体蛋白荧光染色试剂盒
(绿色)ExoSparkler Exosome Protein Labeling Kit-Green 5 samples EX04
(红色)ExoSparkler Exosome Protein Labeling Kit-Red 5 samples EX05
(深红色)ExoSparkler Exosome Protein Labeling Kit-Deep Red 5 samples EX06
*纯化的外泌体(超离心法),蛋白质:1-10 µg/sample,粒子数:10-100×10^8个/sample

常见问题Q&A

Q1:纯化外泌体建议用什么方法?
A1:一般我们推荐使用超速离心法纯化外泌体。但是,免疫沉淀法和磁珠法纯化的外泌体也有过成功染色的实例。
目前,聚合物沉淀法纯化的外泌体由于有聚合物的残留会影响外泌体的染色,所以无法使用本试剂盒。
Q2:细胞摄取外泌体时使用的是哪种培养基?
A2:我们公司在做染色后外泌体进入细胞的实验时,使用过MEM(Minimum Essential Medium)和DMEM(Dulbecco’s Modified Eagle’s Medium)。目前我们公司一直采用的含血清培养基进行外泌体实验,暂时无法推荐无血清培养基。
Q3:染色后的外泌体可以长期保存吗?
A3:染色后的外泌体不建议长期保存。染色后的外泌体最好尽快进行后续实验。
Q4:标记后的纯化操作时,过滤膜上有颜色残留,能否确定未反应的染料彻底分离了?
A5:虽然在过滤膜上可以观察到颜色的残留,但是我们公司通过下面的实验验证了过滤膜上的回收产物里不含未反应的染料。
<实验条件>
超速离心法纯化的①含有外泌体(蛋白质含量10 µg)的缓冲液和②单纯缓冲液,分别按照试剂盒说明书记载的步骤进行染色操作。染色后的产物加入到HeLa细胞中(1.25×10cells),4小时后进行荧光观察。
结果显示,单纯缓冲液染色后的回收产物加入到细胞后,没有观察到荧光,进而可证明回收产物中没有残留的染料。

1612746388147427.png

① Exosome + Buffer

1612746422773616.png

② Only Buffer

1612746443715005.png

Fluorescent images at 4 h incubation

Detection conditions

Green:Ex 488 nm / Em 490 – 540 nm

Red :Ex 561 nm / Em 570 – 640 nm

Deep Red:Ex 640 nm / Em 640 – 760 nm

ExoIsolator Isolation Filter货号:EX11

ExoIsolator Isolation Filter货号:EX11
外泌体(Exosomes)提取试剂盒
ExoIsolator Isolation Filter
商品信息
储存条件:常温
运输条件:常温

特点:

● 配套的Filter Holder另外单独销售

● 10枚一组的大包装

选择规格:
10 pieces
规格性状
ExoIsolator Exosome Isolation Kit使用的Isolation Filter

规格性状

・Isolation Filter     ×10

请注意:单独使用本产品不能提取外泌体

请与 EX10 ExoIsolator Exosome Isolation Kit配合使用。

ExoIsolator Exosome Isolation Kit使用的Isolation Filter

本产品是ExoIsolator Exosome Isolation Kit中附带的Isolation Filter的独立大包装(10枚)。

重复利用ExoIsolator试剂盒时配套使用。

微信截图_20220118172253.png

外泌体(Exosomes)提取试剂盒—ExoIsolator Exosome Isolation Kit货号:EX10

外泌体(Exosomes)提取试剂盒—ExoIsolator Exosome Isolation Kit货号:EX10
外泌体(Exosomes)提取试剂盒
ExoIsolator Exosome Isolation Kit
商品信息
储存条件:常温
运输条件:常温

特点:

● 无需任何操作技巧

● 与超速离心法相当的回收率

● Filter Holder可重复利用

选择规格:
3 tests

规格性状

1642572587753521.png

产品概述

ExoIsolator Exosome Isolation Kit可以从细胞培养上清液中快速分离出外泌体, 其回收率与超速离心法相当。试剂盒中内含的 Isolation Filter可以将细胞培养上清液中的外泌体捕获分离,因此无需复杂的操作即可在短时间快速获取外泌体。

简单的操作:无需任何操作技巧

ExoIsolator Exosome Isolation Kit的操作过程极为简单。组装好Filter Holder和Isolation Filter进行减压过滤,再用PBS回收过滤膜表面上的外泌体即可。这种方法可以尽可能的减少外泌体的损失,而且不易产生人为操作因素上的差别。

1642560928397737.png

回收效率高:与超速离心法相当

目前最常用的外泌体分离方法是超速离心法,使用超速离心法和ExoIsolator Exosome Isolation Kit同时回收HEK293S细胞培养液中的外泌体,通过外泌体粒度分布(图1)、粒子数(图2a)和外泌体marker的表达量(图2b)检测两种方法得到的外泌体并进行比较。结果可以看出,两种方法得到的外泌体的粒度分布和粒子数基本相同,而外泌体marker的表达量的结果显示,在相同蛋白量的情况下,ExoIsolator 的外泌体标志物更高,说明ExoIsolator 比超速离心法得到的外泌体纯度更高。(专利申请中)

1642561512165196.png

图1. 提取得到的外泌体的粒度分布

1642561532690217.png

图2. 粒子数(a)与外泌体标志物的表达量(b)

试剂盒的组成

本试剂盒包含Filter Holder和Isolation Filter,其中Filter Holder可以通过高压蒸汽锅灭菌后重复使用。

微信截图_20220118170325.png

 

另外,作为消耗品的Isolation Filter 10枚装 单独销售。

具体请参考产品页面:货号EX11 产品名:ExoIsolator Isolation Filter。

FAQ

Q:如果没有顺利的提取外泌体,可能的原因有哪些?
A: 可能有以下三方面原因。       1. 过滤时减压的强度过高会使外泌体回收量显著降低。真空泵的推荐压强为-25 kPa,或比-25 kPa更弱。

2. Isolation Filter分为正反两面,安装时的如果方向错误会导致外泌体回收量显著降低。请务必将Isolation Filter的正面(光泽面)向上,具体请参考说明书或操作视频。

3. 为了完全回收Isolation Filter表面上的外泌体,请用PBS反复多次的流过过滤膜的全部表面,具体请参考说明书或操作视频。

Q:分离得到的外泌体是否可以长期保存?
A:4℃可以保存1个月~半年。长期保存时请-80 ℃保存并尽量避免反复冻融,建议分成小包装分开保存。

参考资料(日语):吉冈祐亮、落谷孝広(2020)、エクソソーム実験ガイド  ISBN: 978-4-7581-2246-7。

Q:用含有血清的培养基培养的细胞培养上清液是否可以提取外泌体?
A:不推荐使用含有血清的培养基。由于血清(FBS等)中也含有外泌体,分离得到的外泌体中也会含有血清中的外泌体,对结果产生干扰。
Q:ExoIsolator的回收率是多少?
A:不同检测样品的外泌体回收率也不同。      下面是从市面上销售的纯牛奶中提取的外泌体回收率供参考。

 

蛋白质回收率(%)粒子回收率(%):34.6%(SD±3.9)38.3(SD±8.3)

Q:从细胞培养上清液中可以得到多少外泌体?
A:细胞的种类和培养条件都会对外泌体的量有影响。下面是25 ml HEK293S细胞(振动培养)的培养上清中分离出来的外泌体的量。

回收的蛋白质的质量(μg)回收的粒子数(particles):11.2(SD±2.09)6.0E+09(SD±1.0E+9)

*蛋白质检测采用的BCA法, 粒子数通过NTA分析检测。

Q: 可以回收的外泌体的尺寸是多少?
A: 可以回收大约100-200nm的尺寸。

(参考)

从HEK293S细胞培养上清回收的外泌体的粒度分布

Q: 一个filter可以处理的样本量是多少?
A: 对于培养基上清液,我们建议使用25ml。

随着样品体积的增加,减压过滤时间也会增加。

例如,如果使用25ml HEK293S细胞培养上清液(11.2μg蛋白质),则减压过滤大约需要5-10分钟。

抽滤的时间不仅取决于样品的体积,还取决于样品中所含的外泌体和蛋白质的量。

Q:如果不知道抽吸装置的吸气压力。我该怎么处理?
A: 您可以通过单独准备一个显示吸入压力的压力表来检查吸入压力。
Q: 减压过滤的时间过长。过滤器堵塞。可能的原因是什么?
A: 请检查以下三种可能的原因。

1、如果样品体积太大或样品中的蛋白质浓度太高,抽滤时间可能需要更久。

处理HEK293S细胞上清液时的样品体积和过滤时间参照:

25毫升(11.2μg蛋白质):5-10分钟

50毫升(22.4μg蛋白质):30-60分钟

2、如果减压压力太低太低,过滤时间会更长。

处理25ml HEK293S细胞上清液时的抽滤压力和过滤时间参照:

抽滤压力-25千帕:5-10分钟。

抽滤压力-10千帕:10-20分钟

3、如果包含大量其他物质,而不是外泌体,则可能发生堵塞。

建议事先用0.22μm的 filter 处理样品。

关联产品

ExoSparkler Exosome Membrane Labeling Kit-Green试剂盒
外泌体膜染色试剂-绿色
ECGreen-Endocytosis Detection试剂盒
ECGreen-Endocytosis Detection
ExoSparkler Exosome Membrane Labeling Kit-Red试剂盒
外泌体膜染色试剂-红色
ExoSparkler Exosome Protein Labeling Kit-Green试剂盒
外泌体蛋白质染色-绿色
ExoSparkler Exosome Membrane Labeling Kit-Deep Red试剂盒
外泌体膜染色试剂-深红色

胱氨酸摄取能力检测试剂盒—Cystine Uptake Assay Kit货号:UP05

胱氨酸摄取能力检测试剂盒—Cystine Uptake Assay Kit货号:UP05
胱氨酸摄取能力检测试剂盒
Cystine Uptake Assay Kit
商品信息
储存条件:-20度保存
运输条件:常温

特点:

● 可用荧光酶标仪高通量筛选

选择规格:
20tests
100tests

产品概述

胱氨酸(Cystine)是抗氧化物质谷胱甘肽(GSH)的来源,在细胞内的氧化还原平衡中发挥着重要的作用。在癌症研究领域,Sulfasalazine、Erastin等xCT(胱氨酸/谷氨酸反向转运体)抑制剂可以改变细胞内的氧化应激平衡,进而引发细胞死之一的铁死亡。而在免疫研究领域,据报道,巨噬细胞和中性粒细胞在免疫刺激剂的作用下,xCT的表达会增高并增加细胞内的GSH水平,以平衡自身出于攻击癌细胞目的所释放的ROS。因此,无论是对癌细胞的研究还是免疫细胞的研究都离不开胱氨酸摄取能力这一重要指标。

微信截图_20211227144146.png

检测原理

试剂盒内含的胱氨酸类似物(Cystine Analog, CA)与胱氨酸一样可以通过xCT的转运进入细胞内。细胞裂解后通过添加Reducing Agent还原CA并与检测试剂FOdA特异性反应,生成可产生荧光的物质。[专利申请中]

1640588588474576.png

检测实例

xCT抑制剂Sulfasalazine, Erastin的抑制效果评价

使用本试剂盒对xCT抑制剂Sulfasalazine和Erastin的抑制效果进行评价。荧光结果显示,两种抑制剂均对胱氨酸的摄取有明显的抑制作用。

1640588679650078.png

与传统方法比较

以往在胱氨酸摄取检测时一般采用同位素示踪法,下面是本试剂盒与同位素示踪法结果的比较。

1640588723187402.png

常见问题Q&A

Q1:氨基酸类似物(CA)具体是通过哪种转运体进入细胞内的?
A1:Cystine Analog是通过胱氨酸/谷氨酸转运体(xCT)进入细胞内的。
Q2:目前有检测实绩的细胞有哪些?
A2:下列细胞都有检测实绩:人胶质母细胞瘤细胞, A172

人类肺泡基底上皮细胞, A549

人恶性黑色素瘤细胞, A375

人结肠癌细胞, HCT116

人肝癌细胞, HepG2

人早幼粒白血病, HL60

人纤维肉瘤细胞, HT1080

小鼠胚胎成纤维细胞, MEF

人小细胞肺癌细胞, SBC-5

人胶质瘤细胞, U-251 MG

Q3:氨基酸类似物(CA)进入细胞后会被分解、代谢掉吗?
A3:氨基酸类似物(CA)的构造非常稳定,实验范围内的操作不会被分解或代谢。
Q4:可以用这个试剂盒进行定量检测胱氨酸吗?
A4:本试剂盒不是胱氨酸定量检测试剂盒。
Q5:可以用这个试剂盒对进入细胞内的胱氨酸定量检测吗?
A5:不能定量检测进入细胞内的胱氨酸,本试剂盒是针对细胞摄取胱氨酸能力的数值化检测试剂盒。
Q6:观察不到荧光变化的时候,应该怎么办?
A6:延长CA Uptake solution与细胞的共培养时间(0.5 ~ 1 h)。
Q7:背景荧光较高时,应该怎么办?
A7:环境中可能有未被细胞摄取的胱氨酸类似物残存,用PBS清洗后再进行检测。
Q8:配制CA Uptake solution时,除了不含胱氨酸的无血清培养基以外,还可以使用哪些Buffer?
A8:检测HeLa细胞时,有过使用HBSS或含有0.1% Glucose PBS(+)进行配制的成功实例。
Q9:如何用细胞数对荧光强度进行补正?
A9:可以通过细胞核染色试剂进行补正。也可以使用同仁化学研究所的 Cell Count Normalization Kit (货号C544)进行细胞数补正。
Q10:一般使用哪种孔板比较好?
A10:

下列厂家得孔板有过检测实绩:

公司名/ 产品名/ 货号

Ibidi/ μPlate 96 well ibiTreat black S 15/ Ib89626

AGC techno glass/ EZVIEW Glass Bottom Culture Plate LB 96well/ 5866-096

Thermo Fisher/ 96 Well Black/Clear Bottom Plate, TC Surface, Pack of 10/ 165305

Q11:Cystine uptake solution可以长期保存吗?
A11:CA Uptake solution无法长期保存,请提前计算好用量,务必现用现配。

关联产品

产品名 包装 价格 货号
 Glucose Uptake Assay Kit-Blue 1 set UP01
    Glucose Uptake Assay Kit-Green 1 set UP02
Glucose Uptake Assay Kit-Red 1 set UP03

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
氨基酸摄取能力检测试剂盒
Amino Acid Uptake Assay Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 使用荧光显微镜、荧光酶标仪或流式细胞仪即可快速检测

● 添加探针后无需清洗操作,可直接检测

选择规格:
20tests
100tests

规格性状

1635900625983946.png

产品概述

氨基酸是合成蛋白质和核酸的重要来源,对于增殖活性异常活跃的癌细胞来说尤其重要。不仅如此,癌细胞由于其自身糖酵解途径的亢进,造成乙酰辅酶A(Acetoacetyl-CoA)供应的减少,更加剧了对TCA循环来源之一的氨基酸的需求。基于此方面的研究发现,癌细胞中氨基酸转运体LAT1(L-type amino acid transporter 1)的表达明显增高,说明氨基酸的大量摄取是癌细胞的普遍特征之一。这一发现也有望成为癌症药物研发的新靶点。

在癌症免疫治疗领域,治疗效果不仅与癌细胞的代谢变化有关,免疫细胞的代谢调控也至关重要。例如,随着免疫细胞的衰老,代谢平衡的改变会导致免疫细胞对癌细胞的杀伤能力减弱。因此,通过调控免疫细胞的代谢来改善免疫治疗效果的研究也十分盛行。

氨基酸类似物(BPA)通过氨基酸转运体吸收到细胞后,探针穿透细胞膜并与氨基酸类似物结合,发出荧光(λex=360 nm,λem=460 nm)。本试剂盒可使用荧光显微镜、荧光酶标仪和流式细胞仪检测,通过可视化和数值化的检测评价细胞摄取氨基酸的能力,以及氨基酸转运体抑制剂的筛选。2.png

本试剂盒是在日本大阪府立大学切畑光统(Kirihata Mitsunori)教授提供情报和指导下开发的产品。

运用领域

抑制氨基酸的吸收是癌症药物开发和筛选的靶点之一。此外,通过比较正常细胞和癌细胞的氨基酸吸收能力,还可以了解癌细胞的恶性程度及其细胞特征。1635904506395614.png

操作步骤

微信截图_20211116100204.png

实验例

使用本试剂盒检测BCH(氨基酸转运体抑制剂)对HeLa细胞摄取氨基酸能力的阻碍作用。1635485812944870.png

<检测条件>

细胞:HeLa cells

培养基:MEM (5.5 mmol/l Glucose)

培养条件:1 mmol/l BCH/HBSS (Hanks’ Balanced Salt Solution), 37℃, 30 min

检测仪器:荧光酶标仪 (Ex=340-380 nm, Em: 435-485 nm)

检测仪器:荧光酶标仪 (Ex=360 nm, Em: 460 nm)

1635485841451854.png

<检测条件>

检测仪器:流式细胞仪 (Ex=405 nm, Em: 425-475 nm)

与传统方法比较

与传统的同位素示踪法和代谢组学检测法相比,操作时间大幅减少。

微信截图_20211116100012.png

关联产品

产品名 包装 价格 货号
 Glucose Uptake Assay Kit-Blue 1 set 3,980 UP01
    Glucose Uptake Assay Kit-Green 1 set 3,980 UP02
Glucose Uptake Assay Kit-Red 1 set 3,980 UP03

常见问题Q&A

 

Q:BPA是通过哪种转运蛋白进入细胞内的?
A:有文献报道BPA是通过LAT1, LAT2, ATB0,+转运进入细胞的(Wongthai P et al., “Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2”, Cancer Sci., 2015, Mar;106(3):279-86)。此外,同仁化学也通过实验验证了BCH等LAT1的抑制剂、leucine等LAT1的底物对BPA摄取的抑制作用。

 

Q:已经有检测实例的细胞系有哪些?
A:贴壁细胞有HeLa, A549, HepG2, MCF-7, C2C12, MEF, U251;悬浮细胞有MOLT4。

 

Q:BPA被细胞摄入后,是否会被分解或代谢掉?
A:BPA的构造非常稳定,实验操作范围的过程中不会被分解。
Q:BPA被细胞摄入后,能否进行固定化操作?
A:由于探针会从细胞内向细胞外泄漏,所以无法进行染色后的固定化操作。

 

Q:BPA被细胞摄入后,是否会在特定部位积累?
A:被细胞摄取的BPA均匀的分布在细胞内。

 

Q:BPA uptake solution,Working solution能否长时间保存?
A: BPA uptake solution,Working solution无法长期保存,请现配现用。
Q:如果荧光信号没有变化,我该怎么办?
A:主要可能的原因有以下两点:      ①细胞本身对BPA solution的摄入能力较低。此时建议尝试提高BPA solution

的浓度。(5~50倍稀释)

②Working solution发生变质,请重新配置Working solution,保证现配现用。

Q:如果荧光背景较高, 我该怎么办?
A: 检测环境中可能含有未被细胞摄入的BPA。此时建议用HBSS清洗后再检测。
Q:BPA是否可以定量检测?
A:无法进行定量检测,本染料是评价细胞摄取氨基酸能力高低或增减的试剂。
Q:检测荧光时使用什么样的微孔板比较合适?
A: 有检测实例的微孔板如下:

微信截图_20211116095811.png

Glutamine Assay Kit-WST试剂盒货号:G268

Glutamine Assay Kit-WST试剂盒货号:G268
谷氨酰胺定量检测试剂盒
Glutamine Assay Kit-WST
商品信息
储存条件:0-5度保存,避光,防潮
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamine的定量

选择规格:
1set

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.3.    Glutamate Assay Kit-WST    谷氨酸的定量检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

 

试剂盒内含

1607220500456163.png

产品概述

谷氨酰胺是TCA循环的中间体α-酮戊二酸的主要来源,并且是用于核酸和其他氨基酸合成及能量产生的重要物质。根据文献报道特别是在癌细胞中,谷氨酰胺作为底物可促进Glutaminolysis的生成,而Glutaminolysis是产生α-酮戊二酸的途径之一。同时Glutaminolysis还可以消除活性氧并减少氧化型谷胱甘肽。

Glutamine Assay Kit-WST是用于定量检测谷氨酰胺的试剂盒。无论是培养基内还是细胞内的谷氨酰胺均可以通过WST的还原反应进行定量,可检测的最低浓度为5 μmol/l。此外,本试剂盒还可使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酰胺进行定量。此外,本试剂盒还包含谷氨酰胺标准溶液,可用于通过制作标准曲线来定量样品中谷氨酰胺的浓度。

1606449794882504.png

操作步骤

*向谷氨酰胺标准溶液和含有谷氨酰胺酶的样品孔中加入谷氨酰胺酶溶液,并在样品(不含谷氨酰胺酶溶液)的每个孔中加Reaction Buffer。

由下式算出检测样品中的谷氨酰胺浓度。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

1606455360524924.png

实验例

标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

image.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

1606455940746088.png

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量。
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 12个样品(参照下图)

谷氨酰胺标准溶液和样品的96孔板排列示意图(n=3)

image.png

 

*当n=3时,至少需要240 μl(每孔40 μl×6孔)。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。
Q3:是否可以定量D-Glutamine?
A3:该试剂盒是用于L-Glutamine定量,无法定量D-Glutamine。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酰胺浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解液样品也可以-20°C保存1个月。但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酰胺浓度可能低于检测限(5 µmol/l),谷氨酰胺浓度低于5 µmol/l的样品无法用该试剂盒检测。如果待测样品被稀释,则稀释样品中含有的谷氨酰胺浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酰胺浓度调整到最低检测限以上。
Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622086833365247.png

NADP/NADPH Assay Kit-WST试剂盒货号:N510

NADP/NADPH Assay Kit-WST试剂盒货号:N510
NADP/NADPH检测试剂盒
NADP/NADPH Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 数据可靠,不会与NAD+及NADH反应

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    Lactate Assay Kit-WST    乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

 

试剂盒内含

1611186779448168.jpg

概述

烟酰胺腺嘌呤二核苷酸磷酸(NADP) 是磷酸戊糖途径(一种细胞代谢途径)反应中一种重要的辅因子。NADP以氧化态NADP+和还原态NADPH的形式存在于细胞中。NADPH不光对脂肪酸、胆固醇而且对还原型谷胱甘肽的生成至关重要。另外最近的研究表明,NADP+/NADPH通过限制碳水化合物的摄入来延长寿命与NADP+/NADPH有很大关联。

NADP/NADPH Assay Kit-WST能定量检测细胞中总NADP+/NADPH、NADPH和NADP+的量,并计算它们的比值。细胞内NADPH水平可以用试剂盒内的Extraction Buffer裂解细胞后加热进行定量检测。而细胞内的NADP+水平则可以通过总NADP+/NADPH减去NADPH的量计算得到。

原理

1611188214208217.jpg

技术资料

分别检测NADP+和NADPH

1622538182624823.jpg

分别测定NADP+和NADPH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。 通过加热细胞裂解液能单独检测细胞内NADPH量,而细胞内的NADP+量则可以通过总NADP+/NADPH量减去NADPH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准样品。使用超过12个样品时,您需要准备单独的超滤管。

使用NADP+/NADPH作为标记的研究

1622538301925754.jpg

检索来源:Google Scholar

检索关键词:

NADP/NADPH:“NADP/NADPH”

线粒体:”NADP/NADPH”Mitochondria

癌:”NADP/NADPH”Cancer

氧化应激:”NADP/NADPH”Oxidative Stress

孔板检测中数据的可靠性

通过同时检测试剂盒内的标准溶液,可以对浓度在0.01-1 μmol/l的总NADP+/NADPH和NADPH进行定量。如果样品中的总NADP+/NADPH的浓度>1 μmol/l,可以通过稀释样品来调节。实验证实本试剂盒(NADP/NADPH Assay Kit-WST)不会与NAD+及NADH反应。

1622538475403958.jpg

操作步骤

(1)按下图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

1622538669213787.jpg

 

(2)在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3)在37°C培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4)用酶标仪在450 nm处检测吸光度。

(5)用标准曲线测定样品中总NADP+/NADPH和NADPH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NADP+的量可用下列计算公式计算:总NADP+/NADPH-NADPH的量计算得到。

NADP+=总NADP+/NADPH-NADPH

实验例

细胞样品检测实验例 (加入抗癌药物Doxorubicin)

向Jucket细胞中 (3×106 cells)加入终浓度为500 nmol/l的Doxorubicin (Dox),在培养24 h后检测NADP+/NADPH 比值和还原型/氧化型谷胱甘肽的比值(GSH/GSSG)。用本试剂盒检测PBS清洗后的细胞的NADP+/NADPH比值,用 GSSG/GSH Quantification Kit II (货号:G263) 检测谷胱甘肽的比值。

在细胞内加入DOX后,产生的ROS(H2O2) 破坏了DNA、DNA修复酶 (PARP*) 被激活, 并且NADP+被其消耗。为了补充不足的NADP+,NADPH氧化酶被激活,结果在数据中则会表现为NADP+的增加。与此同时还原型谷胱甘肽 (GSH) 会被产生的ROS所消耗,因此GSH/GSSG的比值会下降。

1622538702215850.jpg

常见问题Q&A

Q1:该试剂盒可以检测多少个样本?
A1:

1622538792123681.jpg

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:可以单独购买过滤管吗?
A2:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q3:工作液稳定吗?
A3:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q4:样品颜色没有变化,是什么原因?
A4:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

NAD/NADH Assay Kit-WST试剂盒货号:N509

NAD/NADH Assay Kit-WST试剂盒货号:N509
NAD/NADH检测试剂盒
NAD/NADH Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 数据可靠,不会与NADP及NADPH反应

● 同一样品可以用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测  

NO.4.    Lactate Assay Kit-WST     乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

 

试剂盒内含

1608705795285154.jpg

概述

烟酰胺腺嘌呤二核苷酸(NAD)是参与糖酵解、电子转移系统和TCA循环等细胞主要代谢途径氧化还原反应的重要辅助因子。NAD以氧化型NAD+和还原型NADH的形式存在于细胞中。维持适当的NAD+和NADH水平对细胞功能至关重要。此外最近的研究表明NAD+水平的下降与衰老相关,NAD+的量被认为是衰老相关研究的一个标志。

NAD/NADH检测试剂盒可以定量细胞中NAD+/NADH、NADH和NAD+的量,并测量它们的比值。细胞内NADH水平可以通过试剂盒内含的Extraction Buffer裂解细胞并在加热后选择性地定量检测。而细胞内的NAD+水平则可以通过总的NAD+/NADH总量减去NADH量计算得到。

原理

1608706558990000.jpg

技术情报

NAD+和NADH的分别检测

1622533065688766.jpg

分别测定NAD+和NADH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。通过加热细胞裂解液能单独检测细胞内的NADH量。而细胞内的NAD+量则可以通过总NAD+/NADH量减去NADH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准品。当使用超过12个样品时,您需要准备单独的微量管。

使用NAD+/NADH作为指标的研究

细胞中NAD+和NADH的量被评估为重要的代谢指标,用于了解受药物管理和基因重组影响的癌细胞和线粒体功能。最近已经明确了长寿相关的受体与NAD+的含量密切相关。越来越多的人将其评估为肥胖,糖尿病和细胞分化等生物学状况的标志物。

1622533183634875.jpg

检索来源:Google Scholar

检索关键词:

NAD/NADH    :  “NAD/NADH”

线粒体             :“NAD/NADH”Mitochondria

癌                    :“NAD/NADH”Cancer

肥胖                 :“NAD/NADH”Obesity

孔板检测中数据的可靠性

可以通过同时测量该试剂盒中包含的标准溶液来进行定量分析。如果样品中NAD+/NADH的总含量高于2 μmol/l,则可以通过稀释样品进行评估。在下面的实验中,使用细胞数相差2倍的HeLa细胞,来确定NAD+和NADH的数量和比率。

 

1622533523559464.jpg

使用增殖培养的HeLa细胞(2.5×105,5.0×105个细胞),从标准曲线中得到细胞内NAD+和NADH的量。最终NAD+的量和NADH的量会随着细胞数而改变,但是即使细胞数改变,NAD+和NADH量的比率也不变。

经确认,将2-Deoxy-D-glucose加入到HeLa 细胞后,代谢活性发生了变化。

用乳酸检测试剂盒检测的实验例

1622533577124364.jpg

向HeLa细胞(1×106细胞)中加入2-Deoxy-D-glucose,终浓度为6 mmol/l,培养24小时后测定乳酸量和NAD+/NADH比。用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量,去除上清后用本试剂盒检测细胞中的NAD+/NADH比。

最终加入2-Deoxy-D-glucose抑制了细胞内糖酵解系统,并导致乳酸量的减少和NAD+/NADH比率的增加。

操作步骤

1622533956148525.jpg

(1) 按照上图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

(2) 在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3) 在37℃培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4) 用酶标仪在450 nm处检测吸光度。

(5) 用标准曲线测定样品中总NAD+/NADH和NADH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NAD+的量可用总NAD+/NADH的量-NADH的量计算得到

NAD+= 总NAD+/NADH-NADH

1611124192642580.jpg

标准曲线

常见问题Q&A

Q1:试剂盒可以测量多少个样本?
A1:

1622534008629299.jpg

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:是否可以使用450 nm以外的滤光片进行测量?
A2:也可以使用490 nm的滤光片,但是吸光度会低于在450 nm处的吸光度。当用不同滤光片检测时,校准曲线如下:

1622534040768583.jpg

Q3:可以单独购买过滤管吗?
A3:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q4:工作液稳定吗?
A4:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q5:样品颜色没有变化,是什么原因?
A5:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269
谷氨酸的定量检测试剂盒
Glutamate Assay Kit-WST
商品信息
储存条件:0-5度保存,避光,防潮
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamate的定量

选择规格:
1set

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glutamine Assay Kit-WST    谷氨酰胺的定量检测

NO.3.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

 

试剂盒内含

1607220085966457.png

产品概述

  谷氨酸不仅用于蛋白质和谷胱甘肽的生物合成,而且还作为神经递质发挥重要作用,谷氨酸过多被认为是引起神经退行性疾病如阿尔茨海默氏病的原因。根据文献报道,胱氨酸/谷氨酸的转运蛋白(xCT)具有吸收胱氨酸放出谷氨酸的功能,而抑制xCT会诱导细胞发生铁依赖性的死亡—铁死亡,近年来针对xCT的癌症研究越来越多。

Glutamate Assay Kit-WST是谷氨酸的定量检测试剂盒。细胞培养基中或细胞内的谷氨酸都可以通过WST的还原反应进行定量,谷氨酸定量的最低浓度为5 μmol/l。此外,本试剂盒还可以使用96孔板进行多样品批量检测。

原理

  本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酸进行定量。此外,本试剂盒还包含谷氨酸标准溶液,可用于通过制作标准曲线来定量样品中谷氨酸的浓度。

 

image.png

操作步骤

  只需将细胞培养上清液或组织/细胞裂解溶液转移到孔板中,加入试剂后孵育即可。

image.png

实验例

  标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

1609314887231458.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

image.png

铁死亡研究中谷氨酸和谷胱甘肽的检测实验例:

据报道通过弹性蛋白,抑制胱氨酸/谷氨酸转运体(xCT)造成铁依赖性的细胞死亡,即细胞铁死亡。在通过弹性蛋白处理后的A549细胞中,确认谷氨酸的释放量和细胞内谷胱甘肽的量。结果显示,通过弹性蛋白处理的细胞中谷氨酸释放的量减少,抑制胱氨酸的摄取,从而导致谷胱甘肽的量减少。

image.png

Sulfasalazine (SSZ) 引起的细胞内代谢变化实验例:

将已知会抑制胱氨酸/谷氨酸转运体(xCT)的Sulfasalazine(SSZ)加入到A549细胞后,确认谷氨酸释放量、细胞内ATP、α-酮戊二酸(α-KG)、谷胱甘肽(GSH)以及ROS的变化。

结果显示,SSZ加入后细胞内ATP、谷胱甘肽(GSH)和谷氨酸释放量减少,细胞内α-酮戊二酸和ROS增加。1612749142364629.png

<使用产品>

· 细胞内GSH:GSSG/GSH Quantification Kit II(货号:G263)

· 细胞内ROS:ROS Assay Kit -Highly Sensitive DCFH-DA-(货号:R252)

· 细胞内ATP:ATP Assay Kit-Luminescence(货号:A550)

· 细胞内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(货号:K261)

<实验条件>

细胞:A549细胞 (1 x 106 cells)  药物处理时间:48 h

1622087224726487.png

1622087244529743.png1622087268638819.png

参考文献) Shogo Okazaki et al.,”Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”.Cancer Sci.,2019,doi:10.1111/cas.14182.

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量是多少?
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 24个样品(参照下图)

谷氨酸标准溶液和样品的96孔板排列示意图(n=3)

1609381817863934.png

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。

※Working solution配制后,避光室温条件下4 h稳定。当暴露于光线下,溶液的颜色会变成褐色。

Q3:是否可以定量D-Glutamate?
A3:该试剂盒是用于L-Glutamate定量,无法定量D-Glutamate。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酸浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解样品也可以-20°C保存1个月。 但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酸浓度可能低于检测限(5 µmol/l),谷氨酸浓度低于5 µmol/l的样品无法用该试剂盒检测。

如果待测样品被稀释,则稀释样品中含有的谷氨酸浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酸浓度调整到最低检测限以上。

Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622087017370785.png

Cell Counting Kit-Luminescence试剂盒货号:CK18

Cell Counting Kit-Luminescence试剂盒货号:CK18
细胞活性(ATP检测)
ATP Assay Kit-Luminescence
商品信息
储存条件:0-5°C
运输条件:常温

特点:

● 操作简便,检测仅需10分钟

● 灵敏度高,微量细胞也可检测

● 悬浮细胞和原代细胞适合

选择规格:
200 tests

活动进行中

订购满5000元,300元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

NO.3.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.4.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.5.    ROS Assay Kit -Highly Sensitive DCFH-DA-    ROS检测

 

产品原理

ATP是生物体内最直接的能量来源,在肌肉收缩、代谢反应、主动运输等方面被广泛使用,甚至被称作生物体内的能量货币。同仁化学研究所开发的Cell Counting Kit-Luminescence试剂盒是一种通过Luciferase来确定细胞中的腺苷三磷酸(ATP)的细胞增殖-毒性检测试剂盒。

本试剂盒只需将各试剂混合后加入孔板,10 分钟后即可检测。不需要去除培养基、清洗细胞等复杂的操作。此外,本试剂盒还有诸如发光的半衰期在3 小时以上、数据的重现性高 、兼容96孔板 、384孔板的多样品检测等诸多优点。

1622096109221126.png

图1. Cell Counting Kit Luminescence 检测原理

实验注意事项

检测方法:多功能酶标仪

检测结果:化学发光值

image.png

注意:该试剂盒只能比较实验组对照组结果,但是不能完全定量检测

(试剂盒内不含标准品)

实验操作步骤

1. 白色 96 孔板中,每孔加入 100 μl 细胞悬液(白色 384 孔板,每孔加入 25 μl 细胞悬液)。

*为了获得更准确的检测结果,建议每个实验组至少设置三个复孔(n=3)。

2. 各孔中加入 100 μl Working solution(白色 384 孔板,每孔加入 25 μl Working solution)。

*气泡会对实验结果产生影响,如果孔中有气泡请尽量清除。 使用电动移液器时,建议使用反向吸液模式(RevPIP Mode)。

*加入 Working solution 后,建议用酶标仪的振荡混匀功能震荡 2 min。由于光照会影响检测结果,如果必须在 有光源的地方震荡,建议用铝箔纸包覆孔板。

3. 将孔板静置于温度设定在 25℃的酶标仪内 10 min。

*如果酶标仪没有温度设定的功能,请将孔板至于 25℃培养箱或 25℃左右室温下,避光培养 10 min。

*为了保证发光信号的稳定性,建议此处的培养时间不要低于 10 min。

4. 检测发光值(RLU)。

CCK-L,仪器检测实验例,详见如下:(实验例仅供参考)

细胞内ATP活性检测(CCK-L)的仪器设置

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297
氧消耗量检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 适用于普通荧光酶标仪

● 不需要昂贵的仪器、特殊介质和孔板

● 带OCR计算表的一体式试剂盒

选择规格:
100tests

产品规格

1669943130546083.png

OCR是线粒体功能的重要指标

由于氧主要在线粒体氧化磷酸化产生三磷酸腺苷(ATP)的过程中消耗,因此其耗氧率(OCR)是分析线粒体功能的指标。众所周知,癌细胞通过糖酵解途径产生ATP,其效率低于氧化磷酸化。在免疫细胞中,氧化磷酸化的优势是抑制抗肿瘤,而糖酵解途径的优势促进抗肿瘤作用。因此,细胞的OCR作为能量代谢的检测指标。

图片1.png

图片2.png

产品概述

细胞外氧消耗量试剂盒包括氧气探针,其具有随着介质中氧气浓度的降低而增加荧光强度的特性,矿物油阻止氧气从空气中流入。

在用荧光显微镜根据细胞外氧浓度测量荧光强度之后,根据Stern-Volmer方程计算细胞的OCR(自动计算表)。

1670202251340521.png1670202328366763.png

*该产品在群马大学Toshitada Yoshihara博士的指导下实现了产品化。

与现有方法比较

到目前为止,OCR测量需要昂贵的设备,如通量分析仪,实时动态检测酶标仪,以及酶标仪的功能调节。该试剂盒推荐给初此使用的人,因为它可以与常规荧光酶标仪一起使用,并附带所有必要试剂的完整包装。

image.png

与石英分析仪对比

石英分析仪(XFe24)和本试剂盒在相同条件下(细胞类型、细胞数量和FCCP浓度)进行测量。

得到XFe24与本试剂盒相关氧消耗速度变化的数据。

图片6.png

细胞种类: HepG2

细胞数: 5×10⁴ cells/well

试剂: FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone)

FCCP 浓度: 2 μmol/l

实验例:细胞最大呼吸能力评估

在HepG2细胞中,通过FCCP刺激后OCR值的变化来评估细胞的最大呼吸。

在FCCP浓度分别2µmol/l和4µmol/l 测量OCR。与2µmol/l相比,在4µmol/l时观察到OCR降低,表明在2µmol/l FCCP时最大呼吸。
图片9.png1669943932873010.png

 

细胞: HepG2

细胞数: 5×104 cells/well

试剂: FCCP

FCCP 浓度 2, 4 μmol/l

实验例:抑制线粒体电子传输链

用抗霉素刺激大鼠细胞,评估线粒体电子运输链抑制后细胞状态的变化,检测多种指标。

结果表明,电子传输链的抑制导致(1)线粒体膜电位的降低和(2)OCR的降低。此外,观察到(3)整个糖酵解途径的NAD+/NADH比率降低,这是由于丙酮酸到乳酸的代谢增加,以维持糖酵解通路;(4)由于活性氧(ROS)增加,GSH耗竭;(6)由于谷胱甘肽生物合成所需NADH减少,NADP+/NADPH比率增加。

图片10.png

1669944135247426.png图片12.png1669944181694051.png

图片14.png1669944219241446.png图片16.png

图片17.png

Q&A

Q:本试剂盒可以检测多少样本?
A:当测试一种细胞类型的相同数量的细胞时,可以测量24个样品。

*如果实验中使用了两种以上的细胞类型或多个细胞编号,则必须准备单独的空白和对照,并且可以测量的样本数量会有所不同。

有关详细信息,请参考手册中的板布局示例。

Q:悬浮细胞有什么实验案例吗?
A:我们准备了一个大鼠细胞实验的例子。<说明>

(1) 将大鼠细胞(3.0×106细胞/ml)悬浮于RPMI培养基中作为空白3,将大鼠细胞(3.0×106细胞/ml)悬于工作溶液中作为对照或样品。将细胞接种在100µl(300000个细胞/孔)的96孔黑色透明底部微孔板中。

 

(2) 向空白1中加入100µl RPMI培养基,向空白2中加入100μl工作溶液。

 

(3) 将微孔板放置在预先设定为37°C的读板器中,孵育30分钟。

 

(4) 向空白1、空白2、空白3和对照品中加入10µl RPMI培养基。

 

(5) 将用RPMI培养基稀释的样品溶液(抗霉素或FCCP溶液)分10µl加入样品中。

 

(6) 加入样品溶液后,立即向每个孔中加入一滴矿物油。

 

(7) 将微板放置在37°C的平板读数器中,孵育5分钟。

 

(8) 在一个时间过程中,用荧光板读取器每10分钟测量一次强度,持续200分钟(Ex:500nm,Em:650nm,底部读数)。

(9) OCR值通过将获得的强度值输入下载的专用Excel计算表来计算。

每孔所需的样品和试剂数量。

图片18.png

1669944613174749.png

Q:如何使用此试剂盒计算OCR?
A:请使用Excel计算表并遵循以下说明

 

<OCR计算程序概述>

(1) 将OCR测量获得的强度值输入计算表,使用Stern-Volmer公式自动计算氧含量(nmol)。

(2) 根据时间(min)与氧含量(nmol)的关系图,检查所有测量条件下获得的线性范围。

(3) 计算步骤(2)中确认的时间(min)和氧含量(nmol)范围内的斜率。

(4) 根据步骤(3)中计算的斜率计算OCR(pmol/min)。

有关详细信息,请参阅手册中的“分析”。

*需要计算OCR的客户请至【网站首页】-【技术支持】-【实验工具】即可找到OCR计算器

Q:矿物油对细胞有细胞毒性吗?
A: 当通过Cell Counting Kit-8细胞毒性测定测定时,在用矿物油处理的细胞中未观察到毒性。
Q:OCR检测后如何测量细胞数
A:使用核酸探针(代码:H342)Hoechst 33342测量每个孔的细胞数,这是该方案的一个示例。

<说明>

(1) 将细胞接种到孔中进行OCR测量(液体体积:100μl/孔)。

(2) 将制备校准曲线的细胞接种到孔中(液体体积:100μl/孔)。

(3) OCR根据说明书进行测量。

(4) 向孔中加入10µl/孔的介质进行校准(使介质体积与OCR测量孔的体积对齐至110µl/孔)。

(5) 将用培养基稀释的Hoechst 33342溶液(10µg/ml)以100µl/孔的速度添加到所有孔中。

*从油的顶部添加OCR测量孔。

(6) 在37°C下培养30分钟。

(7) 用荧光板读数器(Ex:350nm,Em:461nm)测量。

(8) 制备校准曲线(X轴:细胞数量,Y轴:荧光强度),并计算用于OCR测量的孔中的细胞数量。

图片21.png

Q:可以长期存储工作液吗
A 工作液不能储存,需要现配现用。
Q:氧探针或矿物油的反复冷冻和解冻是否会影响测定?
A 我们已经证实,氧气探针和矿物油的反复冻融循环对测定没有影响。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552
ADP/ATP比率检测试剂盒
ADP/ATP Ratio Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

●可获得稳定的ADP/ATP比值

●溶液配制后可以保存

●冷藏保存(无需解冻操作)

选择规格:
100tests

产品概述

通常情况下,当细胞内ATP浓度降低时,会由二磷酸腺苷(ADP)重新合成为ATP,以维持细胞内一定的ATP浓度。当产生ATP的相关代谢发生紊乱时,ADP无法再合成为ATP,ATP却不断地分解成为ADP,导致ADP/ATP的比例上升。而ADP/ATP比率的变化与细胞凋亡、细胞自噬、能量代谢等诸多途径息息相关,因此经常被作为细胞活性的指标之一检测。

微信截图_20211130130502.png

规格性状

1642572478856777.png

检测原理

本试剂盒可以检测细胞中ADP与ATP的比率。首先用萤火虫荧光素酶法检测细胞内的ATP。

微信截图_20211130130953.png

之后用酶将细胞内的ADP全部转化为ATP,再用相同的发光原理检测ATP,即可算出细胞内ADP/ATP的比率。

微信截图_20211130131009.png

与其他公司产品比较

微信截图_20211130131135.png

本试剂盒的检测结果,不受ATP和ADP的总量影响,比值的结果稳定。

微信截图_20211130131146.png

实验例

使用Staurosporine诱导细胞凋亡后,用本试剂盒检测细胞中ADP/ATP的比值。另外,用激光共聚焦显微镜和流式细胞仪检测Annexin V-FITC/PI染料标记的Staurosporine诱导凋亡的细胞。

结果显示,Staurosporine诱导后的细胞中ADP/ATP的比例明显上升。相同条件的细胞中也观察到磷脂酰丝氨酸(PS)的外翻以及细胞膜破损。说明凋亡细胞中的ADP/ATP的比率上升。

 

<ADP/ATP比的检测结果>

 

1638249248457134.png

1638336486572893.png

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可以检测32个样品,96孔板的孔板设置请参考说明书。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:配制好的working solution是否可以保存?
A:本试剂盒共包含4种working solution,ADP working solution无法保存,请现配现用。其他3种的保存条件及保存时间如下:

1638336266497998.png

Q:确定最佳细胞数的方法是什么?
A:配制梯度浓度的细胞悬液播种至孔板中,按照最终实验相同的条件进行培养。使用本试剂盒制作标准曲线(参照图1),选择呈直线性的范围,并且ADP/ATP比率(参考图2)在相对稳定的范围内进行最终实验的检测。下图的情况,最细胞数的范围是2,000~4,000个。

1638336413353486.png

Q:发光法检测波长为多少?
A:由于是通过萤光素检测,所以检测波长为556 nm。

Lipid Droplet Assay Kit-Deep Red试剂货号:LD06

Lipid Droplet Assay Kit-Deep Red试剂货号:LD06
脂滴荧光检测(深红色)
Lipid Droplet Assay Kit-Deep Red
商品信息
储存条件:冷暗处保存
运输条件:室温

特点:

● 高特异性脂滴定位

● 可流式定量检测

● 多种颜色可供选择

选择规格:
1set

凑单关联产品TOP5

NO.1.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.2.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.3.    Iron Assay Kit -Colorimetric-    组织总铁含量及二价铁含量检测

NO.4.    Lipid Droplet Assay Kit-Blue    脂滴荧光检测(蓝色)

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

试剂盒内含

1613698613829264.jpg

概述

同仁化学研究所研发的Lipid Droplet Assays Kit-Blue&Deep Red试剂盒,与油红O和尼罗红不同,只需简单操作即可选择性的检测LDs。与尼罗红相比试剂盒中的染色剂,具有更好的选择性,从而将荧光背景降低到最小值。此外,试剂盒中的Loading Buffer可维持检测过程中细胞的状态完好。本试剂盒可使用流式细胞仪检测活细胞或固定细胞,也可用于荧光酶标仪进行高通量检测。

原理

脂滴(脂肪滴,Lipid droplets, LDs)由中性脂肪组成,主要包括甘油三酯和胆固醇酯,其外层被一层单层磷脂分子包裹。而且脂滴不仅在脂肪细胞中存在,在真核生物中也普遍存在。最新的研究表明,以前认为脂滴仅是一个简单的脂质储存器,但最近的研究表明其在调节脂质代谢1),自噬2)和细胞衰老3)等方面都起着重要作用,因此需要进一步详细地研究脂滴形成·成长·融合·分解的机制。Lipi系列探针是高脂肪亲油性小分子探针,可在疏水环境例如脂滴中发出强荧光。Lipi探针染色后,无须洗涤即可观察到脂滴。

1606799822754601.png

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.

2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.

3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

特点

特点1:定量专用试剂盒

试剂盒包含所需的工作液和缓冲液、可以简便实现定量脂滴。

1609297340714105.png

特点2:大幅度缩短操作,活细胞也可以使用

Lipid Droplet Assay Kit中使用的荧光染料可用于活细胞和固定细胞。因此,与使用比色法试剂相比可以大大缩短检测所需的时间。此外,由于染料不会沉积在孔板上,所以可以提高实验的重现性。

1609297357289693.png

实验例

实验例1:孔板检测实验例

将油酸或Triacsin C(acyl-CoA synthetase抑制剂)分别加入到A549细胞中,并使用Lipid Droplet Assay Kit对脂滴的变化进行定量。结果表明,与对照和加入Triacsin C的细胞相比,加入油酸的细胞中脂滴量有所增加。

1609297394927428.png

<检测条件>

Blue:Ex: 376 – 386 nm、 Em: 435 – 455 nm

Deep Red :Ex: 623 – 633 nm、 Em: 649 – 669 nm

实验例2:流式细胞术的实验例

将油酸或Triacsin C(acyl-CoA synthetase抑制剂)分别加入到HeLa细胞中,并使用Lipid Droplet Assay Kit对脂滴的变化进行定量。结果表明,与对照和加入Triacsin C的细胞相比,加入油酸的细胞中脂滴量有所增加。

1609297411162424.png

< 检测条件>

Blue:Ex: 405 nm、 Em: 425 – 475 nm

Deep Red :Ex: 640 nm、 Em: 650 – 670 nm

脂肪滴产品选择指南

产品名称 规格 货号
成像(成像)

脂滴荧光探针

Lipi-Blue 10 nmol LD01
Lipi-Green 10 nmol LD02
Lipi-Red 100 nmol LD03
Lipi-Deep Red 10 nmol LD04
定量(荧光酶标仪,FCM)
脂滴荧光检测试剂盒
Lipid Droplet Assay Kit – Blue 1 set LD05
Lipid Droplet Assay Kit – Deep Red 1 set LD06

Lipid Droplet Assay Kit-Blue试剂货号:LD05

Lipid Droplet Assay Kit-Blue试剂货号:LD05
脂滴荧光检测(蓝色)
Lipid Droplet Assay Kit-Blue
商品信息
储存条件:冷暗处保存
运输条件:室温

特点:

● 高特异性脂滴定位

● 可流式定量检测

● 多种颜色可供选择

选择规格:
1set

 

凑单关联产品TOP5

NO.1.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.2.    Lipid Droplet Assay Kit-Blue    脂滴荧光检测(蓝色

NO.3.    Lipid Droplet Assay Kit-Deep Red    脂滴荧光检测(深红色)

NO.4.    Glucose    葡萄糖摄取检测

NO.5.    Lactate Assay Kit-WST    乳酸检测

 

试剂盒内含

1609297553692520.jpg

概述

同仁化学研究所研发的Lipid Droplet Assays Kit-Blue&Deep Red试剂盒,与油红O和尼罗红不同,只需简单操作即可选择性的检测LDs。与尼罗红相比试剂盒中的染色剂,具有更好的选择性,从而将荧光背景降低到最小值。此外,试剂盒中的Loading Buffer可维持检测过程中细胞的状态完好。本试剂盒可使用流式细胞仪检测活细胞或固定细胞,也可用于荧光酶标仪进行高通量检测。

原理

脂滴(脂肪滴,Lipid droplets, LDs)由中性脂肪组成,主要包括甘油三酯和胆固醇酯,其外层被一层单层磷脂分子包裹。而且脂滴不仅在脂肪细胞中存在,在真核生物中也普遍存在。最新的研究表明,以前认为脂滴仅是一个简单的脂质储存器,但最近的研究表明其在调节脂质代谢1),自噬2)和细胞衰老3)等方面都起着重要作用,因此需要进一步详细地研究脂滴形成·成长·融合·分解的机制。Lipi系列探针是高脂肪亲油性小分子探针,可在疏水环境例如脂滴中发出强荧光。Lipi探针染色后,无须洗涤即可观察到脂滴。

1606799822754601.png

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.

2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.

3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

特点

特点1:定量专用试剂盒

试剂盒包含所需的工作液和缓冲液、可以简便实现定量脂滴。

1609297340714105.png

特点2:大幅度缩短操作,活细胞也可以使用

Lipid Droplet Assay Kit中使用的荧光染料可用于活细胞和固定细胞。因此,与使用比色法试剂相比可以大大缩短检测所需的时间。此外,由于染料不会沉积在孔板上,所以可以提高实验的重现性。

1609297357289693.png

实验例

实验例1:孔板检测实验例

将油酸或Triacsin C(acyl-CoA synthetase抑制剂)分别加入到A549细胞中,并使用Lipid Droplet Assay Kit对脂滴的变化进行定量。结果表明,与对照和加入Triacsin C的细胞相比,加入油酸的细胞中脂滴量有所增加。

1609297394927428.png

<检测条件>

Blue:Ex: 376 – 386 nm、 Em: 435 – 455 nm

Deep Red :Ex: 623 – 633 nm、 Em: 649 – 669 nm

实验例2:流式细胞术的实验例

将油酸或Triacsin C(acyl-CoA synthetase抑制剂)分别加入到HeLa细胞中,并使用Lipid Droplet Assay Kit对脂滴的变化进行定量。结果表明,与对照和加入Triacsin C的细胞相比,加入油酸的细胞中脂滴量有所增加。

1609297411162424.png

< 检测条件>

Blue:Ex: 405 nm、 Em: 425 – 475 nm

Deep Red :Ex: 640 nm、 Em: 650 – 670 nm

脂肪滴产品选择指南

产品名称 规格 货号
成像(成像)

脂滴荧光探针

Lipi-Blue 10 nmol LD01
Lipi-Green 10 nmol LD02
Lipi-Red 100 nmol LD03
Lipi-Deep Red 10 nmol LD04
定量(荧光酶标仪,FCM)
脂滴荧光检测试剂盒
Lipid Droplet Assay Kit – Blue 1 set LD05
Lipid Droplet Assay Kit – Deep Red 1 set LD06

Lipi-Deep Red试剂货号:LD04

Lipi-Deep Red试剂货号:LD04
脂滴检测(深红色)
Lipi-Deep Red
商品信息
储存条件:冷暗处保存
运输条件:室温

特点:

● 高特异性脂滴定位

● 可进行组织脂滴成像

● 多种颜色可供选择

选择规格:
10nmol

概述

 Lipi系列探针是高脂肪亲脂性小分子探针,其在疏水环境例如脂滴中发出强荧光。活细胞和固定细胞中的脂滴都可以使用本试剂清楚地观察。

原理

脂滴(脂肪滴,Lipid droplets, LDs)由中性脂肪组成,主要包括甘油三酯和胆固醇酯,其外层被一层单层磷脂分子包裹。而且脂滴不仅在脂肪细胞中存在,在真核生物中也普遍存在。最新的研究表明,以前认为脂滴仅是一个简单的脂质储存器,但最近的研究表明其在调节脂质代谢1),自噬2)和细胞衰老3)等方面都起着重要作用,因此需要进一步详细地研究脂滴形成·成长·融合·分解的机制。Lipi系列探针是高脂肪亲油性小分子探针,可在疏水环境例如脂滴中发出强荧光。Lipi探针染色后,无须洗涤即可观察到脂滴。

1606799822754601.png

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.

2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.

3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

脂滴的染色例

在活细胞状态下,用油酸诱导HeLa细胞后,用不同颜色的Lipi系列荧光探针检测

1608085752373328.png

检测条件:

* Lipi-Blue : Ex: 405 nm, Em: 450–500 nm

* Lipi-Green: Ex: 488 nm, Em:500–550 nm

* Lipi-Red: Ex: 561 nm, Em: 565–650 nm

* Lipi-Deep Red: Ex: 640 nm, Em: 650–700 nm

染色条件:

 

在HeLa细胞培养基中加入200 μmol/l油酸,过夜培养后,用PBS清洗细胞,并分别加入不同颜色的Lipi探针(Lipi-Blue/Green/Deep Red:0.1 μmol/l、Lipi-Red:1 μmol/l) 染色15 min后观察。

如何制备油酸溶液

请参考Q&A“油酸溶液的制备和加入细胞的方法”。

与竞争品比较

Lipi系列荧光探针大幅度地改善了现有脂滴染色试剂存在的问题 (如选择性,滤波器的适应性,荧光滞留性)。而且 Lipi系列荧光探针也适用于多重染色实验,可选颜色更多。

 

同仁化学试剂 其他品牌(T公司)
Lipi-Blue Lipi-Green Lipi-Red Lipi-Deep Red Oil Red O

(比色)

Nile Red 试剂B
活细胞染色 ×
固定细胞染色
对脂肪滴的选择性
(低背景)
× ×
与其他试剂的共染色*1 *2 n.d. ×*3
活细胞内的滞留性(24h) × × n.d. × ×

*1. 与绿色荧光共染时,推荐使用550 nm以下的绿色荧光滤光片。

*2. 关于共染时推荐的荧光滤光片,您可以参考网页下方Q&A“共染时推荐的荧光滤光片”。

*3. 用GFP的滤光片(500~540 nm)时会串色。

产品特点

特点1:高特异性定位脂滴

在HeLa活细胞中加入油酸,并用100 nmol/l Lipi-Deep Red 和100 nmol/l Nile Red(T公司)染色。结果显示Nile Red会染上脂滴以外的其它细胞质。

1609305949175013.png

 

<检测条件>

Lipi-Deep Red: Ex: 640 nm / Em: 650 – 700 nm

Nile Red: Ex: 561 nm / Em: 565 – 650 nm

特点2:荧光在细胞中的滞留时间长

 

分别用Lipi系列、Nile Red和市售的试剂B染色HepG2细胞,观察在培养30 min和24 h时的荧光图像。

1608085555762666.png

实验证实Lipi-Blue和Lipi-Green在培养24 h后虽然荧光强度有所降低,但仍有荧光。 而Lipi-Red,Lipi-Deep Red,Nile Red和市售试剂B在 培养24 h后几乎无荧光,不适合长时间的实时成像观察。

实验例

实验例1:脂肪细胞的脂滴成像

用Lipi系列染色3T3-L1前脂肪细胞,可以清楚地检测出脂肪细胞中的脂质。

染色例_3.png

<脂肪细胞染色实验例>

(1)将3T3-L1细胞(1.5×104cells/孔)接种在µ-Plate 96孔板(ibidi)的各孔中,并在37℃ 5% CO2培养箱内培养。

(2)按照常规方法诱导分化为脂肪细胞。

(3) 去除上清液,用DMEM(25 mmol/l葡萄糖, 10% FBS, 无酚红)洗涤两次。

(4)加入用DMEM(25 mmol/l葡萄糖,10%FBS,无酚红)制备的每种染料的工作溶液,并在37℃下培养24 h。

(5)用荧光显微镜观察。

※试剂浓度:各2.5 µmol/l

实验例2:脂肪组织的脂滴成像

用4%PFA固定小鼠肝脏脂肪组织(冰冻切片)后用Lipi系列染色,比较幼鼠(6周龄)和老年小鼠(31周龄)的脂滴成像图像,发现肝脏脂肪组织中的脂滴量有很大差异。1622182689922281.png

<组织样品的染色实验例>

(1)向小鼠肝脏脂肪组织(冰冻切片)中加入4%PFA(PBS),在室温下静置5 min。

(2)用PBS清洗后,加入各浓度的Lipi系列working solution(PBS),在4℃下静置24 h。

(3)用PBS清洗后,用落射型荧光显微镜进行荧光观察。

※工作液浓度:2.5 µmol/l(Lipi-Blue、Lipi-Green、Lipi-Deep Red)、25 µmol/l(Lipi-Red)

Lipi系列荧光图谱

1608623420383006.jpg

脂肪滴产品种类的检测方法

产品名称 规格 货号
成像(成像)

脂滴荧光探针

Lipi-Blue 10 nmol LD01
Lipi-Green 10 nmol LD02
Lipi-Red 100 nmol LD03
Lipi-Deep Red 10 nmol LD04
定量(荧光酶标仪,FCM)
脂滴荧光检测试剂盒
Lipid Droplet Assay Kit – Blue 1 set LD05
Lipid Droplet Assay Kit – Deep Red 1 set LD06

常见问题Q&A

Q1:油酸溶液的制备和加入细胞的方法
A1:我们按照以下步骤制备和使用油酸溶液。
<油酸储存溶液>
必要的试剂
·BSA(牛血清白蛋白)
·油酸
·0.1 mol/l Tris-HCl(pH8.0)
制备步骤
1)在0.1 mol/l Tris-HCl(pH8.0)中加入BSA并溶解(BSA:浓度0.14 g/ml)。
2)在容器(一次性的离心管)中加入油酸后,加入步骤1)得到的BSA溶液,使用涡旋振荡器进行混合(油酸浓度:4 mmol/l)。*1
3)用孔径为0.22 µm的注射式过滤器(PTFE)过滤步骤2)的混合溶液。
4)每次使用后冷藏保存。*2
* 1   油酸和BSA溶液混合可能导致液体混浊,继续摇动让油酸和BSA形成复合物使混浊会消失。
* 2 将所需量的油酸储备溶液加入到实验使用的培养基中,用于将油酸加入到细胞中。
<加入细胞的方法>
1)将细胞在37℃ 5%CO2培养箱内培养24 h。
2)用加入了油酸储备溶液的培养基(油酸的终浓度200 µmol/L)替换,再培养24 h。
3)然后按照说明书对脂滴进行荧光染色观察。
Q2:共染时推荐的荧光滤光片。
1622182766133966.png

 

 

Q3:检测不到荧光信号的应对方法是什么?
  Q4如果没有检测到荧光信号,可能会有几个因素。
请确认以下内容,并根据情况考虑优化条件。
1.激发·发射波长与染料的荧光特性不一致。
确认说明书上的荧光图谱和您仪器的激发和发射波长是否匹配。
2.染色条件不是最合适的。
[试剂浓度]
确认工作液的浓度是否在以下范围内。
Lipi-Blue,Lipi-Green:0.1-0.5μmol/l
Lipi-Red:1-5μmol/l
*如果在上述条件下仍未检测到荧光信号,请提高染色浓度。
Lipi-Blue,Lipi-Green:1-2μmol/l
Lipi-Red:10-20μmol/l
[染色时间]
-一般是30min,如没有荧光信号可以延长染色时间至1-2 h。
3.固定条件不适合。
根据细胞种类不同,染色前后的固定操作可能会导致无法染色或灵敏度减弱。
在这种情况下,“请参考Q&A:是否可以对固定细胞进行染色?。
4.脂滴小,难以确认。
根据细胞的不同,可能会有脂滴很小难以确认的情况。
这种情况下,我们建议在高倍率的显微镜下确认,或用油酸处理细胞作为阳性对照进行评估。
Q4:是否可以对固定细胞进行染色?
A4:可以染色,固定细胞的染色步骤有以下注意事项:
※请用多聚甲醛 (PFA) 固定细胞,不建议用甲醇等醇类固定细胞,因为可能会影响脂滴的结构。
※部分细胞种类染色后,如果在固定细胞过程中出现无染色或染色强度不够的情况,需要摸索最佳固定条件。
○细胞染色后固定实验例 (以HepG2细胞为例)
1. 将HepG2细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养15 min。
4. 去除上清液,用PBS清洗2次。
5. 加入4% PFA (在PBS中),在室温固定5 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。
○细胞染色前固定实验例 (以HeLa细胞为例)
1. 将HeLa细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 加入4% PFA (在PBS中),在室温固定5 min。
4. 去除上清液,用PBS清洗2次。
5. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养30 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。

Lipi-Green试剂货号:LD02

Lipi-Green试剂货号:LD02
脂滴检测(绿色)
Lipi-Green
商品信息
储存条件:冷暗处保存
运输条件:室温

特点:

● 高特异性脂滴定位

● 可进行组织脂滴成像

● 多种颜色可供选择

选择规格:
10nmol

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测

NO.2.    Calcein-AM/PI Double Staining Kit    活死细胞双染

NO.3.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.4.    DALGreen – Autophagy Detection    细胞自噬荧光探针

NO.5.    GSSG/GSH Quantification Kit II   氧化型/还原型谷胱甘肽

 

概述

Lipi系列探针是高脂肪亲脂性小分子探针,其在疏水环境例如脂滴中发出强荧光。活细胞和固定细胞中的脂滴都可以使用本试剂清楚地观察。

原理

脂滴(脂肪滴,Lipid droplets, LDs)由中性脂肪组成,主要包括甘油三酯和胆固醇酯,其外层被一层单层磷脂分子包裹。而且脂滴不仅在脂肪细胞中存在,在真核生物中也普遍存在。最新的研究表明,以前认为脂滴仅是一个简单的脂质储存器,但最近的研究表明其在调节脂质代谢1),自噬2)和细胞衰老3)等方面都起着重要作用,因此需要进一步详细地研究脂滴形成·成长·融合·分解的机制。Lipi系列探针是高脂肪亲油性小分子探针,可在疏水环境例如脂滴中发出强荧光。Lipi探针染色后,无须洗涤即可观察到脂滴。

1606808000602549.png

 

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.

2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.

3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

脂滴的染色例

在活细胞状态下,用油酸诱导HeLa细胞后,用不同颜色的Lipi系列荧光探针检测

1608085752373328.png

检测条件:

* Lipi-Blue :Ex: 405 nm, Em: 450–500 nm

* Lipi-Green:Ex: 488 nm, Em:500–550 nm

* Lipi-Red:Ex: 561 nm, Em: 565–650 nm

* Lipi-Deep Red:Ex: 640 nm, Em: 650–700 nm

染色条件:

 

在HeLa细胞培养基中加入200 μmol/l油酸,过夜培养后,用PBS清洗细胞,并分别加入不同颜色的Lipi探针(Lipi-Blue/Green/Deep Red:0.1 μmol/l、Lipi-Red: 1 μmol/l) 染色15 min后观察。

如何制备油酸溶液

请参考Q&A“油酸溶液的制备和加入细胞的方法”。

与竞争品比较

Lipi系列荧光探针大幅度地改善了现有脂滴染色试剂存在的问题 (如选择性,滤波器的适应性,荧光滞留性)。而且 Lipi系列荧光探针也适用于多重染色实验,可选颜色更多。

 

同仁化学试剂 其他品牌(T公司)
Lipi-Blue Lipi-Green Lipi-Red Lipi-Deep Red Oil Red O

(比色)

Nile Red 试剂B
活细胞染色 ×
固定细胞染色
对脂肪滴的选择性
(低背景)
× ×
与其他试剂的共染色*1 *2 n.d. ×*3
活细胞内的滞留性(24h) × × n.d. × ×

*1. 关于共染色时推荐的荧光滤光片,您可以参考网页下方Q&A“共染时推荐的荧光滤光片”。

*2. 与绿色荧光共染色时,推荐使用550 nm以下的绿色荧光滤光片。

*3. 用GFP的滤光片(500~540 nm)时会串色。

产品特点

特点1:与抗体检测方法高度相似

用4%PFA固定HepG2细胞后,用100 nmol/l Lipi-Green染色。 然后在脂滴膜上用抗ADFP抗体荧光标记,免疫染色, 该抗体可以特异性标记脂滴膜上的蛋白质 (Adipophilin; ADFP)。 实验证明Lipi-Green与脂滴上蛋白质ADFP的定位高 度相关。

1608087006507248.png

<检测条件>

Lipi-Green:Ex:405 nm / Em:450-500 nm,

抗ADFP抗体(Alexa Fluor 647):Ex:640 nm / Em:650-700 nm

特点2:高特异性定位脂滴

在HeLa活细胞中加入油酸,并用100 nmol/l Lipi-Green和100 nmol/l Nile Red(T公司)共染。右下图中黄色荧光部分为Lipi-Green 和Nile Red共染上的部分,结果显示Nile Red会染上脂滴以外的其它细胞质。

1608087320929003.png

<检测条件> 

Lipi-Green: Ex: 488 nm / Em: 500 – 550 nm

Nile Red:Ex: 561 nm / Em: 565-650 nm

特点3:荧光在细胞中滞留时间长

分别用Lipi系列、Nile Red和市售的试剂B染色HepG2细胞,观察在培养30 min和24 h时的荧光图像。

1608085555762666.png

实验证实Lipi-Blue和Lipi-Green在培养24 h后虽然荧光强度有所降低,但仍有荧光。 而Lipi-Red,Lipi-Deep Red,Nile Red和市售试剂B在 培养24 h后几乎无荧光,不适合长时间的实时成像观察。

实验例

实验例1:脂肪细胞的脂滴成像

用Lipi系列染色3T3-L1前脂肪细胞,可以清楚地检测出脂肪细胞中的脂质。

1606802130571661.png

<脂肪细胞染色实验例>

(1)将3T3-L1细胞(1.5×104cells/孔)接种在µ-Plate 96孔板(ibidi)的各孔中,并在37℃ 5% CO2培养箱内培养。

(2)按照常规方法诱导分化为脂肪细胞。

(3)去除上清液,用DMEM(25 mmol/l葡萄糖, 10% FBS, 无酚红)洗涤两次。

(4)加入用DMEM(25 mmol/l葡萄糖,10%FBS,无酚红)制备的每种染料的工作溶液,并在37℃下培养24 h。

(5)用荧光显微镜观察。

※试剂浓度:各2.5 µmol/l

实验例2:脂肪组织的脂滴成像

用4%PFA固定小鼠肝脏脂肪组织(冰冻切片)后用Lipi系列染色,比较幼鼠(6周龄)和老年小鼠(31周龄)的脂滴成像图像,发现肝脏脂肪组织中的脂滴量有很大差异。

1622182324539005.png

<组织样品的染色实验例>

(1)向小鼠肝脏脂肪组织(冰冻切片)中加入4%PFA(PBS),在室温下静置5 min。

(2)用PBS清洗后,加入各浓度的Lipi系列working solution(PBS),在4℃下静置24 h。

(3)用PBS清洗后,用落射型荧光显微镜进行荧光观察。

※工作液浓度:2.5 µmol/l(Lipi-Blue、Lipi-Green、Lipi-Deep Red)、25 µmol/l(Lipi-Red)

 

实验例3:利用高内含成像技术对药物引起的脂质性肝脏毒性的研究

将普萘洛尔(交感神经β受体阻断剂)加入人肝癌细胞系(HepG2细胞)后,用荧光显微镜观察脂肪滴的变化。通过荧光图像中脂肪滴的数量、面积和荧光强度的变化分析脂肪滴的积累情况。

 

脂肪滴的荧光成像

 

分别用0,10,30μmol/l的普萘洛尔(Propranolol)作用于HepG2细胞后,用LipiGreen染色脂肪滴,Hoechst33342染色细胞核,然后用荧光显微镜(Ti2-E道理显微镜)观察。结果显示,随着普萘洛尔浓度的增加,脂肪低也呈现增加的趋势。

图片1.jpg

<检测条件>

 

细胞核(Blue):Ex.385nm/Em.460 nm
脂肪滴 (Green):Ex.475 nm/Em.535 nm

药物处理对脂肪滴积累的分析

通过分析荧光图像中的细胞数量和脂肪滴的面积、数量和荧光强度来了解细胞积累脂肪滴的情况。结果显示,脂肪滴的数量和面积随着普萘洛尔浓度的增加而上升,在浓度超过20μmol/l的条件下,脂肪滴的形成非常明显。DS-Qi2荧光显微镜可在一次拍摄中捕捉到广泛的细胞区域,而NIS-Elements软件的EDF模块可对所有脂肪滴进行更详细的定量数据统计分析。

图片2.png

<检测仪器>

 

高内涵成像系统(HTC)

(尼康:https://www.microscope.healthcare.nikon.com/zh_CN/products/high-content-imaging)

 

“有关染色操作、详细的分析方法等请参考尼康网站的 “Application Notes: Hepatotoxicity test of drug-induced lipidosis using high-content imaging”。

Lipi系列荧光图谱

1608623420383006.jpg

脂肪滴产品种类的检测方法

产品名称 规格 货号
成像(成像)

脂滴荧光探针

Lipi-Blue 10 nmol LD01
Lipi-Green 10 nmol LD02
Lipi-Red 100 nmol LD03
Lipi-Deep Red 10 nmol LD04
定量(荧光酶标仪,FCM)
脂滴荧光检测试剂盒
Lipid Droplet Assay Kit – Blue 1 set LD05
Lipid Droplet Assay Kit – Deep Red 1 set LD06

常见问题Q&A

Q1:油酸溶液的制备和加入细胞的方法
A1:我们按照以下步骤制备和使用油酸溶液。
<油酸储存溶液>
必要的试剂
·BSA(牛血清白蛋白)
·油酸
·0.1 mol/l Tris-HCl(pH8.0)
制备步骤
1)在0.1 mol/l Tris-HCl(pH8.0)中加入BSA并溶解(BSA:浓度0.14 g/ml)。
2)在容器(一次性的离心管)中加入油酸后,加入步骤1)得到的BSA溶液,使用涡旋振荡器进行混合(油酸浓度:4 mmol/l)。*1
3)用孔径为0.22 µm的注射式过滤器(PTFE)过滤步骤2)的混合溶液。
4)每次使用后冷藏保存。*2
* 1   油酸和BSA溶液混合可能导致液体混浊,继续摇动让油酸和BSA形成复合物使混浊会消失。
* 2 将所需量的油酸储备溶液加入到实验使用的培养基中,用于将油酸加入到细胞中。
<加入细胞的方法>
1)将细胞在37℃ 5%CO2培养箱内培养24 h。
2)用加入了油酸储备溶液的培养基(油酸的终浓度200 µmol/L)替换,再培养24 h。
3)然后按照说明书对脂滴进行荧光染色观察。
Q2:共染时推荐的荧光滤光片。
1622182368976119.png

 

 

Q3:检测不到荧光信号的应对方法是什么?
  Q4如果没有检测到荧光信号,可能会有几个因素。
请确认以下内容,并根据情况考虑优化条件。
1.激发·发射波长与染料的荧光特性不一致。
确认说明书上的荧光图谱和您仪器的激发和发射波长是否匹配。
2.染色条件不是最合适的。
[试剂浓度]
确认工作液的浓度是否在以下范围内。
Lipi-Blue,Lipi-Green:0.1-0.5μmol/l
Lipi-Red:1-5μmol/l
*如果在上述条件下仍未检测到荧光信号,请提高染色浓度。
Lipi-Blue,Lipi-Green:1-2μmol/l
Lipi-Red:10-20μmol/l
[染色时间]
-一般是30min,如没有荧光信号可以延长染色时间至1-2 h。
3.固定条件不适合。
根据细胞种类不同,染色前后的固定操作可能会导致无法染色或灵敏度减弱。
在这种情况下,“请参考Q&A:是否可以对固定细胞进行染色?。
4.脂滴小,难以确认。
根据细胞的不同,可能会有脂滴很小难以确认的情况。
这种情况下,我们建议在高倍率的显微镜下确认,或用油酸处理细胞作为阳性对照进行评估。
Q4:是否可以对固定细胞进行染色?
A4:可以染色,固定细胞的染色步骤有以下注意事项:
※请用多聚甲醛 (PFA) 固定细胞,不建议用甲醇等醇类固定细胞,因为可能会影响脂滴的结构。
※部分细胞种类染色后,如果在固定细胞过程中出现无染色或染色强度不够的情况,需要摸索最佳固定条件。
○细胞染色后固定实验例 (以HepG2细胞为例)
1. 将HepG2细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养15 min。
4. 去除上清液,用PBS清洗2次。
5. 加入4% PFA (在PBS中),在室温固定5 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。
○细胞染色前固定实验例 (以HeLa细胞为例)
1. 将HeLa细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 加入4% PFA (在PBS中),在室温固定5 min。
4. 去除上清液,用PBS清洗2次。
5. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养30 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。
Q5:Lipi-Green可以用流式细胞仪检测吗?
A5:Lipi-Green不能用于流式,但Lipi-Blue或Lipi-Deep Red可以用。

我们还特别准备了可以便于定量检测的试剂盒。

产品名称                                              货号

Lipid Droplet Assay Kit – Blue             LD05

Lipid Droplet Assay Kit – Deep Red    LD06

Lipi-Blue试剂货号:LD01

Lipi-Blue试剂货号:LD01
脂滴检测(蓝色)
Lipi-Blue
商品信息
储存条件:冷暗处保存
运输条件:室温

特点:

● 高特异性脂滴定位

● 可进行组织脂滴成像

● 多种颜色可供选择

选择规格:
10 nmol

概述

 Lipi系列探针是高脂肪亲脂性小分子探针,其在疏水环境例如脂滴中发出强荧光。活细胞和固定细胞中的脂滴都可以使用本试剂清楚地观察。

原理

脂滴(脂肪滴,Lipid droplets, LDs)由中性脂肪组成,主要包括甘油三酯和胆固醇酯,其外层被一层单层磷脂分子包裹。而且脂滴不仅在脂肪细胞中存在,在真核生物中也普遍存在。最新的研究表明,以前认为脂滴仅是一个简单的脂质储存器,但最近的研究表明其在调节脂质代谢1),自噬2)和细胞衰老3)等方面都起着重要作用,因此需要进一步详细地研究脂滴形成·成长·融合·分解的机制。Lipi系列探针是高脂肪亲油性小分子探针,可在疏水环境例如脂滴中发出强荧光。Lipi探针染色后,无须洗涤即可观察到脂滴。

1606799822754601.png

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.

2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.

3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

脂滴的染色例

在活细胞状态下,用油酸诱导HeLa细胞后,用不同颜色的Lipi系列荧光探针检测

1608085752373328.png

检测条件:

* Lipi-Blue :Ex:405 nm, Em:450–500 nm

* Lipi-Green:Ex:488 nm, Em:500–550 nm

* Lipi-Red:Ex:561 nm, Em:565–650 nm

* Lipi-Deep Red:Ex:640 nm, Em:650–700 nm

染色条件:

 

在HeLa细胞培养基中加入200 μmol/l油酸,过夜培养后,用PBS清洗细胞,并分别加入不同颜色的Lipi探针(Lipi-Blue/Green/Deep Red:0.1 μmol/l、Lipi-Red:1 μmol/l) 染色15 min后观察。

如何制备油酸溶液

请参考Q&A“油酸溶液的制备和加入细胞的方法”。

与竞争品比较

Lipi系列荧光探针大幅度地改善了现有脂滴染色试剂存在的问题 (如选择性,滤波器的适应性,荧光滞留性)。而且 Lipi系列荧光探针也适用于多重染色实验,可选颜色更多。

 

同仁化学试剂 其他品牌(T公司)
Lipi-Blue Lipi-Green Lipi-Red Lipi-Deep Red Oil Red O

(比色)

Nile Red 试剂B
活细胞染色 ×
固定细胞染色
对脂肪滴的选择性
(低背景)
× ×
与其他试剂的共染色*1 *2 n.d. ×*3
活细胞内的滞留性(24h) × × n.d. × ×

*1. 与绿色荧光共染时,推荐使用550 nm以下的绿色荧光滤光片。

*2. 关于共染时推荐的荧光滤光片,您可以参考网页下方Q&A“共染时推荐的荧光滤光片”。

*3. 用GFP的滤光片(500~540 nm)时会串色。

产品特点

特点1:与抗体检测方法高度相似

4%PFA固定HepG2细胞后,用100 nmol/l Lipi-Blue染色。 然后在脂滴膜上用抗ADFP抗体荧光标记,免疫染色, 该抗体可以特异性标记脂滴膜上的蛋白质 (Adipophilin; ADFP)。 实验证明Lipi-Blue与脂滴上蛋白质ADFP的定位高度相关。

1608085657117767.png

<检测条件> 

Lipi-Blue:Ex:405 nm / Em:450-500 nm,

抗ADFP抗体(Alexa Fluor 647):Ex:640 nm / Em:650-700 nm

特点2:高特异性定位脂滴

在HeLa活细胞中加入油酸,并用100 nmol/l Lipi-Blue和100 nmol/l Nile Red(T公司)染色。该结果显示Nile Red会染上脂滴以外的其它细胞质。

1608085594204676.png

<检测条件> 

Lipi-Blue:Ex:405 nm / Em:450-500 nm,

Nile Red:Ex:561 nm / Em:565-650 nm

特点3:荧光在细胞中滞留时间长

分别用Lipi系列、Nile Red和市售的试剂B染色HepG2细胞,观察在培养30 min和24 h时的荧光图像。

1608085555762666.png

实验证实Lipi-Blue和Lipi-Green在培养24 h后虽然荧光强度有所降低,但仍有荧光。 而Lipi-Red,Lipi-Deep Red,Nile Red和市售试剂B在培养24 h后几乎无荧光,不适合长时间的实时成像观察。

实验例

实验例1:脂肪细胞的脂滴成像

用Lipi系列染色3T3-L1前脂肪细胞,可以清楚地检测出脂肪细胞中的脂质。

染色例_3.png

<脂肪细胞染色实验例>

(1)将3T3-L1细胞(1.5×104cells/孔)接种在µ-Plate 96孔板(ibidi)的各孔中,并在37℃ 5% CO2培养箱内培养。

(2)按照常规方法诱导分化为脂肪细胞。

(3) 去除上清液,用DMEM(25 mmol/l葡萄糖, 10% FBS, 无酚红)洗涤两次。

(4)加入用DMEM(25 mmol/l葡萄糖,10%FBS,无酚红)制备的每种染料的工作溶液,并在37℃下培养24 h。

(5)用荧光显微镜观察。

※试剂浓度:各2.5 µmol/l

实验例2:脂肪组织的脂滴成像

用4%PFA固定小鼠肝脏脂肪组织(冰冻切片)后用Lipi系列染色,比较幼鼠(6周龄)和老年小鼠(31周龄)的脂滴成像图像,发现肝脏脂肪组织中的脂滴量有很大差异。

1622182113614915.png

<组织样品的染色实验例>

(1)向小鼠肝脏脂肪组织(冰冻切片)中加入4%PFA(PBS),在室温下静置5 min。

(2)用PBS清洗后,加入各浓度的Lipi系列working solution(PBS),在4℃下静置24 h。

(3)用PBS清洗后,用落射型荧光显微镜进行荧光观察。

※工作液浓度:2.5 µmol/l(Lipi-Blue、Lipi-Green、Lipi-Deep Red)、25 µmol/l(Lipi-Red)

实验例3:使用细胞成像仪进行定量分析

将油酸或Triacsin C(acyl-CoA synthetase抑制剂)分别加入到HepG2细胞中,并比较脂滴的变化。在分析中,我们使用共聚焦定量细胞成像仪(横河电机株式会社 CQ1)获得每个细胞脂滴数量和面积的数据。

脂肪滴和细胞核的成像

使用共聚焦定量细胞成像仪在447/60 nm处拍摄脂滴图像,在525/50 nm处拍摄细胞核图像,在分析软件CellPathfinder中识别单个脂滴和细胞核,并计算其数量和面积。

1622182138183555.png

横河电机CQ1拍摄条件

使用板:96 well plate,物镜:20倍

激发波长 :405 nm (Lipi-Blue):蓝色、488 nm (SYBR Green): 绿色

黄框线:细胞核、红框线:脂滴

脂滴数量及面积的分析

根据细胞核和脂滴的检测数据,每个细胞的脂滴的数量和面积如图所示。结果,加入油酸的脂滴增加了7-10倍,而加入Triacsin C抑制了脂滴的形成,脂滴数量减少到Control组的50-60%。

1608085889955527.png

细胞处理及脂滴染色条件

将HepG2细胞(1×103cells)接种到96孔板中过夜培养。除去培养上清液后,加入未处理(仅含FBS的DMEM培养基)、油酸(含200 μmol/l油酸和FBS的DMEM培养基)或Triacsin C(含5 µmol/l Triacsin C和FBS的DMEM培养基)过夜培养。之后用PBS 清洗2次,用4%的PFA在室温下固定5 min后,用PBS 清洗2次。最后,加入0.5 μmol/l Lipi-Blue working solution在室温、避光下染色2 h后,用共聚焦定量细胞成像仪进行定量分析。

Lipi系列荧光图谱

1608623420383006.jpg

脂肪滴产品种类的检测方法

产品名称 规格 货号
成像(成像)

脂滴荧光探针

Lipi-Blue 10 nmol LD01
Lipi-Green 10 nmol LD02
Lipi-Red 100 nmol LD03
Lipi-Deep Red 10 nmol LD04
定量(荧光酶标仪,FCM)
脂滴荧光检测试剂盒
Lipid Droplet Assay Kit – Blue 1 set LD05
Lipid Droplet Assay Kit – Deep Red 1 set LD06

常用问题Q&A

Q1:油酸溶液的制备和加入细胞的方法
A1:我们按照以下步骤制备和使用油酸溶液。
<油酸储存溶液>
必要的试剂
·BSA(牛血清白蛋白)
·油酸
·0.1 mol/l Tris-HCl(pH8.0)
制备步骤
1)在0.1 mol/l Tris-HCl(pH8.0)中加入BSA并溶解(BSA:浓度0.14 g/ml)。
2)在容器(一次性的离心管)中加入油酸后,加入步骤1)得到的BSA溶液,使用涡旋振荡器进行混合(油酸浓度:4 mmol/l)。*1
3)用孔径为0.22 µm的注射式过滤器(PTFE)过滤步骤2)的混合溶液。
4)每次使用后冷藏保存。*2
* 1   油酸和BSA溶液混合可能导致液体混浊,继续摇动让油酸和BSA形成复合物使混浊会消失。
* 2 将所需量的油酸储备溶液加入到实验使用的培养基中,用于将油酸加入到细胞中。
<加入细胞的方法>
1)将细胞在37℃ 5%CO2培养箱内培养24 h。
2)用加入了油酸储备溶液的培养基(油酸的终浓度200 µmol/L)替换,再培养24 h。
3)然后按照说明书对脂滴进行荧光染色观察。
Q2:共染时推荐的荧光滤光片。
1622182205461269.png

 

Q3:检测不到荧光信号的应对方法是什么?
  Q4如果没有检测到荧光信号,可能会有几个因素。
请确认以下内容,并根据情况考虑优化条件。
1.激发·发射波长与染料的荧光特性不一致。
确认说明书上的荧光图谱和您仪器的激发和发射波长是否匹配。
2.染色条件不是最合适的。
[试剂浓度]
确认工作液的浓度是否在以下范围内。
Lipi-Blue,Lipi-Green:0.1-0.5μmol/l
Lipi-Red:1-5μmol/l
*如果在上述条件下仍未检测到荧光信号,请提高染色浓度。
Lipi-Blue,Lipi-Green:1-2μmol/l
Lipi-Red:10-20μmol/l
[染色时间]
-一般是30min,如没有荧光信号可以延长染色时间至1-2 h。
3.固定条件不适合。
根据细胞种类不同,染色前后的固定操作可能会导致无法染色或灵敏度减弱。
在这种情况下,“请参考Q&A:是否可以对固定细胞进行染色?。
4.脂滴小,难以确认。
根据细胞的不同,可能会有脂滴很小难以确认的情况。
这种情况下,我们建议在高倍率的显微镜下确认,或用油酸处理细胞作为阳性对照进行评估。
Q4:是否可以对固定细胞进行染色?
A4:可以染色,固定细胞的染色步骤有以下注意事项:
※请用多聚甲醛 (PFA) 固定细胞,不建议用甲醇等醇类固定细胞,因为可能会影响脂滴的结构。
※部分细胞种类染色后,如果在固定细胞过程中出现无染色或染色强度不够的情况,需要摸索最佳固定条件。
○细胞染色后固定实验例 (以HepG2细胞为例)
1. 将HepG2细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养15 min。
4. 去除上清液,用PBS清洗2次。
5. 加入4% PFA (在PBS中),在室温固定5 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。
○细胞染色前固定实验例 (以HeLa细胞为例)
1. 将HeLa细胞接种在µ-Slide 8孔板上,并在37℃ 5% CO2培养箱中过夜培养。
2. 去除培养基,用PBS清洗2次。
3. 加入4% PFA (在PBS中),在室温固定5 min。
4. 去除上清液,用PBS清洗2次。
5. 在细胞中加入用PBS配制的Lipi工作液,在37℃培养箱中培养30 min。
6. 去除上清液,用PBS清洗后,在荧光显微镜下观察。

脂肪酸摄取测定试剂盒——Fatty Acid Uptake Assay Kit货号:UP07

脂肪酸摄取测定试剂盒——Fatty Acid Uptake Assay Kit货号:UP07
脂肪酸摄取测定试剂盒
Fatty Acid Uptake Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 灵敏度高,操作简便

● 操作简单三步即可完成实验

● 无需清洗细胞

选择规格:
100tests

试剂盒内含

image.png

产品概述

该试剂盒使用Fatty Acid Uptake Probe作为脂肪酸类似物,通过位于细胞膜表面的脂肪酸转运蛋白进入细胞,可以通过荧光显微镜、流式细胞仪和荧光酶标仪等荧光测量方法检测细胞的摄取能力。此外,该试剂盒配备了Quenching Buffer,可消除未进入细胞的Fatty Acid Uptake Probe的荧光,因此无需清洗细胞也可以检测。

检测产品优势

 

为什么脂肪酸摄取能力越来越受到关注?

脂肪酸是为生物体供应能量的重要物质。脂肪酸摄取能力不仅与肥胖和糖尿病等疾病有关,也是癌细胞的代谢指标之一(左下图)。细胞增殖活跃的癌细胞往往需要很多脂质,所以细胞内的脂肪酸合成和细胞外的脂肪酸摄取很活跃(右下图)。因此,以癌细胞的脂肪酸代谢途径为目标,开发了很多药物。

1665475248585592.png1665475280244946.png

用单个试剂盒即可解决整个脂肪酸摄取实验!

1665475321825088.png

本试剂盒所内含的脂肪酸类似物通过脂肪酸转运体被转运至细胞内,再通过荧光探针(荧光法)检测该类似物的摄入量【检测原理】。Quenching buffer可以省去清洗操作的麻烦和时间成本,进行检测【操作步骤】。

检测原理

1665475427372904.png

操作步骤

1665475458696616.png

检测仪器

HepG2细胞通过添加脂肪酸转运蛋白抑制剂CB-2,在不同仪器中检测其脂肪酸摄取能力的变化。

1665475487584787.png

选择指南

Washing Buffer或Quenching Buffer的选择指南

请参考下表,根据细胞种类和实验系统(操作和测量装置)选择Washing Buffer或Quenching Buffer。

〇:可测量、×:不可测量、△:参考注释

Washing Buffer (10×) Quenching Buffer
贴壁细胞 悬浮细胞 贴壁细胞 悬浮细胞
清洗操作 必要 不需要
荧光酶标仪 底部读数(透明底) △※1
顶部读数 ×
荧光显微镜
激光共聚焦显微镜 △※2
流式细胞仪 ×

※1接种的细胞需要覆盖板底(大约:3x105cells/well),使之静置一段时间,从而可检测在板底的贴壁细胞。

※2使用激光共聚焦显微镜时,请将Quenching Buffer用Washing Buffer稀释10倍后使用,如果不能使用ex:488nm,请使用ex:640nm进行检测。

实验例

确认细胞中脂肪酸代谢状态

在A549细胞中添加不含葡萄糖或含有25mmol/l葡萄糖的DMEM培养基,制备了正常状态(control)和饥饿状态(Starved)的两组细胞。使用本试剂盒对两组细胞进行染色,并使用荧光显微镜观察。

结果显示,在对照组细胞中,荧光素大多聚集在脂肪滴中,而在饥饿状态的细胞中荧光素主要集中在线粒体和内质网上。由此可看出在饥饿状态下的细胞脂肪酸代谢的变化。

1665476343582003.png

对照组细胞和饥饿组细胞的荧光图

1665476375765131.png

*供参考的可检测数:35 mm dish 10块、 96孔板 1 块

产品Q&A

Q: 可用于哪些种类的细胞
A:在下述细胞中有使用实例。

 

细胞 由来
A549 人肺泡基底上皮腺癌细胞
HepG2 人肝癌细胞
HeLa 人宫颈癌细胞
Jurkat 人白血病T细胞
MOLT-4 人急性淋巴白血病细胞
3T3-L1 (preadipocyte) 前脂肪細胞
3T3-L1 (adipocyte) 脂肪細胞

 

Q: 将Fatty Acid Uptake Probe孵育进活细胞后,可以固定细胞吗?
A:<实验例>使用4%PFA固定染色后的细胞实验案例

Protocol:贴壁细胞

1.     将制备好的细胞接种在培养皿或96孔板上;

2.     用无血清培养基洗涤两次;

3.     加入无血清培养基,在培养箱(37℃,5%CO2存在下)中静置孵育15 min;

4.     去除上清液,添加Fatty Acid Uptake Probe working solution,在培养箱(37℃、5%CO2存在下)中静置15 min;

5.     去除上清液,用Washing Buffer solution清洗1次;

6.     向细胞中加入4%PFA/PBS并在室温下孵育5 min;

7.     用PBS洗涤细胞3次,用荧光显微镜检测,荧光酶标仪检测。

bc5b27025062ab6f6f42cee13ef9977.png

8fdfa63cc177ba94974f267f0abff7b.png

※固定会降低荧光强度

悬浮细胞

1.      取细胞样品至微管中;

2.      300×g离心5min,去除上清液;

3.      加入无血清培养基,300×g离心5min,去除上清液,重复两次;

4.      加入无血清培养基,混匀细胞,在培养箱(37℃,5%CO2)中静置15 min;

5.      300×g离心5 min,去除上清液;

6.      加入Fatty Acid Uptake Probe working solution,混匀细胞,在培养箱(37℃,5%CO2)中静置15 min ;

7.      300×g离心5min,去除上清液;

8.      用Washing Buffer solution清洗一次;

9.      加入4%PFA/PBS,混匀细胞,在室温下孵育5 min;

10.    300×g离心5 min,去除上清液;

11.    加入PBS,混匀细胞,300×g离心5 min,去除上清液;重复两次。

12.    用荧光显微镜或流式细胞仪检测。

1665476467676262.png

Q: 用荧光酶标仪检测时,应该用哪种板子?
A: 检测荧光,请使用细胞培养用的黑色孔板。

〇:可使用、×:不可使用、△:参考注释

 

贴壁细胞 悬浮细胞
不透明底 透明底 不透明底 透明底
Washing Buffer (10×) Top Reading
Bottom Reading × ×
Quenching Buffer Top Reading × ×
Bottom Reading × × △※

※接种的细胞需要覆盖板底,使之静置一段时间,从而可检测在板底的贴壁细胞。

〈使用Quenching Buffer时,悬浮细胞的数据〉

1665477515110488.png

实验案例使用孔板:

 

厂家 产品名 Cat No.
ibidi µPlate 96 well   ibiTreat black S 15 ib89626
Thermo   Fisher 96 Well Black/Clear   Bottom Plate, TC Surface, Pack of 10 165305

 

Q: Fatty Acid Uptake Probe working solution可以保存吗?
A:无法保存。
Q:背景较高怎么办?
A:样品中可能存在未进入细胞的Fatty Acid Uptake Probe。可重复使用Washing Buffer solution清洗,或者考虑使用Quenching Buffer。
Q:试剂盒可检测的样品数量是多少?
A:请参照下表。

 

贴壁细胞 悬浮细胞
培养皿

(添加量)

6   well

(1.5   ml/well)

24-well

(0.3   ml/well)

 

96-well

(0.1   ml/well)

 

35-mm   dish

(1.5   ml/well)

 

1.5-ml   microtube

(0.5   ml/tube)

 

样本数 7   sample 34   sample 100   sample 7   sample 20   sample

 

Q:使用Quenching Buffer用激光共焦显微镜进行检测,应该怎么做?
A:使用Quenching Buffer用激光共焦显微镜进行检测时,请将Quenching Buffer用Washing Buffer solution稀释10倍后使用,或者使用640nm激发光检测。

<用用激光共焦显微镜进行透射光观察时所看到的现象>

1665478016663968.png

Q:可以进行脂肪酸定量吗?
A:不能使用本产品定量脂肪酸。
Q:可以量化细胞内摄取的Fatty Acid Uptake Probe吗?
A:无法定量细胞内摄取的Fatty Acid Uptake Probe。该试剂是为了确认脂肪酸摄取能力的增减的配合用试剂。
Q:可以和其他荧光染料共染吗?
A:Fatty Acid Uptake Probe是使用红色荧光观察。因此,请使用绿色或者红色荧光检测以外的试剂进行共染色。

与本公司线粒体染色试剂MitoBright LT Deep Red(MT12)共染色的实绩。

〈进入红色荧光〉

1665478635264548.png

〈与MitoBright LT Deep Red共染色〉

1. 制备细胞样品接种到培养皿或者孔板中;

2.去除培养基,用无血清培养基洗涤两次;

3.加入无血清培养基,在培养箱(37℃,5%CO2)中静置15 min;

4.去除上清液后,添加Fatty Acid Uptake Probe working solution,在培养箱(37℃,5%CO2)中静置15 min;

5. 去除上清液后,添加0.1µmol/l MitoBright LT working solution,在培养箱(37℃,5%CO2)中静置30 min;

6. 去除上清液后,用HBSS洗涤两次;

7.加入HBSS并用荧光显微镜观察。

1665478420992147.png

Q: 荧光显微镜观察时有什么注意事项吗?
A:荧光显微镜观察时,如果持续照射激发光,Fatty Acid Uptake Probe的荧光可能会淬灭。请控制连续的激发光的照射次数。

1665478445399847.png

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

α-Ketoglutarate Assay Kit-Fluorometric货号:K261
α-酮戊二酸(α-KG)检测试剂盒(荧光法)
α-Ketoglutarate Assay Kit-Fluorometric
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

 

● 检测结果的重现性好

● 可作为线粒体活性的指标

● 多角度了解细胞代谢变化

选择规格:
100tests

规格性状

100 tests     ・Fluorescent Dye
・α-KG   Standard
・Enzyme Mix
・Coenzyme
・Assay Buffer
・lysis Solution
・Control Buffer
・ALT   Solution
・Reaction Buffer
×1
300 μl×1
×1
×1
6.5 ml×1
2 ml×1
25 ml×1
35 μl×1
5 ml×1

产品概述

α-酮戊二酸(α-KG)是TCA循环中重要的中间体。它被作为进入TCA循环的葡萄糖代谢物增加的指标以及谷氨酰胺代谢(Glutaminolysis,一种谷氨酰胺底物与α-KG反应的通路)增加的指标。α-KG在神经递质谷氨酸和γ-氨基丁酸(GABA)的产生中起着重要作用,不仅如此它还担负着一定的清除细胞内的活性氧的功能,是非常重要的细胞代谢指标之一。

检测原理

α-Ketoglutarate Assay Kit-Fluorometric可以定量检测α-酮戊二酸(α-KG)。通过检测反应生成的试卤灵(Resorufin)的荧光(Ex:530 – 560 nm、Em:580 – 600 nm)对细胞内的α-KG进行定量。另外,本试剂盒还可以通过使用96孔板进行多样品检测。

1648716960519343.jpg

检测操作

整个操作过程,从细胞的前处理到荧光酶标仪检测,只需要按照操作说明书的步骤添加试剂即可检测细胞内α-酮戊二酸(α-KG)的浓度。而且,本试剂盒专门针对同类型检测方法中普遍存在的结果重现性差的问题进行了优化,即使是第一次做α-KG检测实验的科研人员也可以放心使用。

► 结果重现性高的两个秘诀

1) 样品的前处理

1648717117113502.png

同类型的检测试剂盒在样品前处理时需要微量的pH调节、过滤膜过滤等操作,这是导致结果重现性差的原因之一。而同仁化学研究所的α-KG检测试剂盒,只需要按照说明书添加试剂,可以大幅减少前处理过程中产生的操作误差。

2) α-Ketoglutarate的检测

1648717303611794.png

其他检测试剂盒使用与上图相同的原理,但是由于①和②的两步反应同时在96孔板里进行,这是造成误差的另一个重要原因。而同仁化学研究所的试剂盒将这两步反应分开进行,进一步降低了误差。

标准曲线的作成例

本试剂盒附带α-KG的标准品,可以通过制作标准曲线来定量的检测样品中的α-KG浓度。如果样品中的α-KG浓度高于20 μmol/l,请预先稀释样品再检测。

图片5.jpg

实验例

Doxorubicin(DOX)刺激引起的细胞内代谢变化

阿霉素(Doxorubicin, DOX)可以作用于 细胞周期的G2/M期,停止细胞的增殖并且细胞衰老,利用DOX作用于A549细胞,会导致胞内α-KG浓度增加。另外通过SG 03 Cellular Senescence Detection Kit – SPiDER-βGal检测细胞衰老、C548 Cell Cycle Assay Solution Deep Red / C549 Cell Cycle Assay Solution Blue检测细胞周期、MT09 JC-1 MitoMP Detection Kit检测线粒体膜电位的结果如下:

image.png

图片8.png

 

1648718544826538.png1648718550521530.png

Sulfasalazine(SSZ)引起的细胞内代谢变化

Sulfasalazine(SSZ)可以抑制细胞的胱氨酸/谷氨酸转运体(xCT)。用SSZ刺激A549细胞后,细胞内的α-KG、ATP、GSH、细胞放出的谷氨酸等变化用下列方法进行了检测。结果发现,SSZ刺激后细胞内的ATP、谷胱甘肽(GSH)、谷氨酸的放出量均减少,而细胞内的α-KG和ROS水平增加。1648718906334129.jpg

<使用产品>

・细胞内ATP:CK18 Cell Counting Kit-Luminescence

・细胞内GSH:G263 GSSG/GSH Quantification Kit II

・细胞内ROS:R252 ROS Assay Kit -Highly Sensitive DCFH-DA-

・胞外谷氨酸:G269 Glutamate Assay Kit-WST

<实验条件>

细胞:A549细胞(1 x 106 cells) 暴露时间: 48 h

图片5.png

NASH诱导小鼠的肝脏组织的代谢变化

NASH(非酒精性脂肪肝)的病变组织中有ATP、α-KG、NAD的量减少的特点。使用4周龄的高脂肪食物投喂(引发NASH)的1型糖尿病模型小鼠(STAM模型)的肝脏组织,检测其中的ATP、α-KG、NAD水平的变化。结果显示,NASH诱导后10周龄的小鼠组中ATP、α-KG、NAD的浓度降低。

1648776699547364.png

※详细的实验步骤请参考FAQ“是否有检测组织的实验例

 

<使用产品>

 

・组织内ATP:CK18 Cell Counting Kit-Luminescence

・组织内NAD:N509 NAD/NADH Assay Kit-WST

 

常见问题Q&A

Q1:每个试剂盒可以检测所少个样品?
A1:如果标准曲线和样品都采用3个复孔来计算,可以检测12个样品。具体的96孔板的样品孔排列实例请见说明书。

 

Q2:是否可以用黑色孔板以外的孔板(透明板或白色板)?
A2:用透明板或白色板无法准确的绘制标准曲线,请使用黑色96孔板进行实验

 

Q3:检测时样品没有显色,可能的原因有哪些?
A3:本试剂盒对α-KG的检测范围是0.2 μmol/l以上,样品中的α-KG浓度如果低于0.2 μmol/l无法检测出来。可以尝试降低样品前处理时的稀释倍率。
Q:配置好的Working Solution能否保存?
A:配置好的Working solution无法保存,请现配现用。另外,Working solution遇光不稳定,配制好后请用铝箔纸包裹避光。※避光、室温的条件下可保存2小时左右。
Q:检测样品是否可以保存?
A:操作说明书上的“—定量细胞内α-KG的样品制备—”的步骤5中得到的前处理样品在-20℃可以保存10天。冷冻保存后的样品会发生沉淀,请离心后取上清作为检测样品。※加入20 μl Lysis solution, 吹打混匀后8,000xg离心10 min,取上清。
Q:是否有组织样品的检测实例?
A:有小鼠肝脏组织的检测实例。

具体的实验步骤如下:

 

碱性提取法提取的肝脏样品中的代谢指标检测

 

1.取大约100 mg小鼠肝脏组织样品加至500μl预冷的0.5 mol/ KOH水溶液中。

※必须使用经过灌流操作完全脱血的组织样品,否则残留的血液会影响检测结果。

2.用Dounce型组织研磨器研磨肝脏组织。

3.将研磨后的样品回收至微管中,用500μl预冷的0.5 mol/ KOH水溶液清洗研磨器,并将清洗后的液体也

一起转移到回收样品的微管中(共约1 ml)。

4.向回收样品的微管中加入1 ml预冷的超纯水,充分混合后在冰浴上静置5 min(共约2 ml)。

※由于溶液的粘性较高,有时会出现离心后难以分离的情况。此时,用25 g左右的细针头注射器不断

吸取/推出(大约20-30次),直到可以顺畅的吹打溶液为止。

5.离心机12,000xg,4 ℃离心5 min。

α-KG检测用样品的制备

 

6.取900μl上一步操作(步骤5)得到的溶液,加入200μl 1mol/l KH2PO4水溶液进行中和,混匀后在冰浴上

静置5 min。

7.离心机12,000xg,4 ℃离心5 min,取1 ml上清液至新的微管中作为检测样品。

 

<检测时的注意事项>

※组织提取的样品无法保存,请在当天内完成检测。

※枪头中残留的样品溶液时造成误差的原因之一,吸取样品溶液时尽量缓慢,减少枪头中残留的样品溶液。

※在稀释标准品和样品的时候,使用0.5 mol/l KOH水溶液和1mol/l KH2PO4水溶液按照9:5比率混合的溶液。

 

<检测实例>

诱导非酒精性脂肪肝的小鼠肝脏组中α-KG量的变化

1648777907404487.png

Lactate Assay Kit-WST试剂盒货号:L256

Lactate Assay Kit-WST试剂盒货号:L256
乳酸检测试剂盒
Lactate Assay Kit-WST
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 细胞上清液和细胞样品均适用

● 操作简便

● 灵敏度高最低可检测到0.02 mmol/l的乳酸

● 试剂稳定性高

● 享有显色底物WST专利

选择规格:
50 tests
200 tests
代谢检测方案

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    FerroOrange    细胞亚铁离子检测

NO.3.    Glucose Assay Kit-WST    葡萄糖检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    MitoPeDPP    线粒体内脂质过氧化物检测

 

试剂盒内含

image.png

概述

乳酸是细胞的一种主要代谢途径-糖酵解的代谢产物,也是肌肉疲劳和高乳酸血症的重要生物标志物。它还可以作为监测细胞内代谢途径变化的标志物。此外最近的代谢研究表明,乳酸是组织和癌细胞的三羧酸循环中碳的主要来源。

Lactate Assay Kit-WST®可用于定量检测糖酵解代谢产生的乳酸,并优化了定量过程。本试剂盒通过测定WST®的显色反应来定量细胞上清液中的乳酸含量,可用96孔板检测,灵敏度高,最低可检测到0.02 mmol/l的乳酸。

WST®:WST是日本同仁化学研究所的注册商标

原理

本试剂盒通过测定WST的显色反应来定量细胞上清或细胞内的乳酸含量。

另外,试剂盒中含有乳酸标准液,可以通过制备标准曲线来定量样品中的乳酸浓度。

image.png

特点

特点1:操作简单,只需要加入试剂

只需在加入细胞裂解液的细胞上清液中加入试剂,培养即可。

1622509569511608.jpg

特点2:试剂稳定性高

1622509609938735.jpg

乳酸标准曲线

可以从使用试剂盒中的乳酸标准液制作出乳酸标准曲线,然后通过标准曲线求出样品中的乳酸浓度。

当乳酸浓度在1 mmol/l以上时,可以通过稀释样品进行检测。

image.png

实验例

2-脱氧-D-葡萄糖对糖酵解的抑制作用 

1、在96孔板中接种1×104个/孔的HeLa细胞(MEM培养基中含有10%胎牛血清和1%青霉素-链霉素),在37℃,5% CO2培养箱中过夜培养。

2、去除上清液后,在培养基中加入100 µl配制好的系列浓度的2-脱氧-D-葡萄糖溶液。

3、在37℃,5% CO2培养箱中过夜培养。

4、培养后,吸取20 µl细胞上清液至1.5 ml微量管中,并用超纯水稀释8倍制备样品溶液,然后按照说明书的图3在每孔中加入20 µl样品溶液。

5、按照“配制乳酸标准液”的方法配制乳酸标准液。

6、在96孔板中按照说明书的图3在每孔中加入20 µl各种浓度的乳酸标准液。

7、在每孔中加入80 µl工作液。

8、在37℃培养箱中培养30 min。

9、用酶标仪测定450 nm的吸光度,并用标准曲线计算样品的乳酸浓度。

image.png

2-脱氧-D-葡萄糖对糖酵解的抑制作用,随着2-脱氧-D-葡萄糖 (一种糖酵解抑制剂)浓度的增加,乳酸浓度逐渐减少

葡萄糖和乳酸的测定例

用葡萄糖测定试剂盒(货号:G264)和乳酸测定试剂盒检测(货号:L256):检测将葡萄糖转运蛋白抑制剂Phloretin添加到Jurkat细胞时的代谢活性变化。

 

1622509674875319.jpg

■实验条件

细胞:Jurkat细胞(5×105细胞)

药物:Phloretin(终浓度:100 µmol/l)

培养时间:过夜培养

■结果

Phloretin的添加抑制了葡萄糖的摄取,减少了葡萄糖的消耗,增加了培养基中葡萄糖的量,并减少了乳酸的量。

常见问题Q&A

Q:使用含有血清的培养基,可以测定培养上清液中的乳酸吗?
A:使用含有血清的培养基,可以测定培养上清液中的乳酸。
但是在含有血清的情况下,由于背景上升,需要测定培养基OD值并将其作为背景对照减去。
【参考数据】
含和不含10%FBS的吸光度比较

1622509903121990.jpg

<结果>
在培养基中加入10%FBS的组吸光度大大升高,因此需要测定培养基作为背景对照。

Q:如何检测细胞内乳酸含量?
(1)用微量管收集1×105的细胞*1

(2)以300×g离心2 min后去除上清液。

(3)加入300 μl的PBS,用移液器吹打使其重悬,再以300×g离心2 min后去除上清液。
(4)加入300 μl细胞裂解液*2(0.1%Triton-X)并涡旋1 min,制成细胞裂解液。

(5)以8000×g离心5 min,收集上清液。
(6)将步骤(5)所得溶液用超滤离心管(PALL,No.OD010C3,滤膜分子量:10K)以12,000×g 离心10 min*3去除蛋白质,得到待测样品。

*1、样品为HeLa细胞时,为了检测出0.02 mmol/l以上的乳酸含量,需要1×105的细胞甚至更多。
*2、如果细胞裂解液中含有SDS会抑制显色,因此不要使用含有SDS的缓冲液。

*3、内源性乳酸脱氢酶(LDH)会导致背景增高,因此通过脱蛋白处理去除内源性乳酸脱氢酶

(LDH)。
※测定样品设定为3个复孔时(n=3),合计至少需要60 μl以上(每孔20 μl×3)。
※如果过滤后滤液不足60 μl,可适当延长过滤时间。
※稀释细胞裂解液至合适的浓度,使结果在标准曲线范围内(0-1 mmol/l)。

Q:配制后的Working   Solution稳定性如何,可以保存多久?
A:Working Solution需要现配现用。
光会影响Working Solution的稳定性,所以配制后请用铝箔纸包裹。
配制后的Working Solution在室温避光条件下可以保存4 h。
(Working Solution遇到光,溶液的颜色会由红色变为橙色,背景会升高。)
Q:为什么我的样品孔没有显色?
A:样品中的乳酸浓度可能低于检测限(0.02 mmol/l)。
乳酸浓度低于0.02 mmol/l的样品无法用该试剂盒检测,因此请考虑其他方法,如LC-MS。
如果待测样品被稀释,则稀释样品中含有的乳酸浓度可能低于0.02 mmol/l。
请降低稀释比例,从而将检测样品的乳酸浓度调整到最低检测限以上。
Q:是否可以检测含有还原性物质的样品?
A:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量乳酸浓度。
实验中如遇到以上情况,可以设定药物对照(不含细胞含药物的培养基+试剂),
并将标准品孔和样品孔的吸光度分别减去药物对照的吸光度。
Q:该试剂盒可以定量D-Lactate吗?
A:该试剂盒是用于L-Lactate的定量,不能定量D-Lactate。
Q:是否可以使用450 nm以外波长的滤光片进行检测?
A:也可以使用490 nm的滤光片, 但是吸光度会低于在450 nm处的吸光度。
Q:一个试剂盒可以检测样品的数量。
A:制备标准曲线和样品(n=3)时,可以检测的样品数量如下所示。

1622509930424476.jpg

标准曲线:8个点(0, 0.0157, 0.0313, 0.0625, 0.125, 0.25, 0.5, 1 mmol/l)(n=3)

L256-96孔板示意图3.jpg

96孔板排列示意图(n=3)

Glucose Assay Kit-WST试剂盒货号:G264

Glucose Assay Kit-WST试剂盒货号:G264
葡萄糖检测试剂盒
Glucose Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

 

● 细胞上清液和细胞样品均适用

● 稳定性好

●可使用酶标仪高通量筛选

选择规格:
50 tests
200 tests
代谢
Glucose(葡萄糖)摄取能力检测试剂盒

凑单关联产品TOP5

NO.1.    Lactate Assay Kit-WST     乳酸检测

NO.2.    Glucose Uptake Probe-Green    葡萄糖摄取检测

NO.3.    Cell Counting Kit-8     细胞增殖毒性检测  

NO.4.    FerroOrange    细胞亚铁离子检测

NO.5.    Liperfluo    细胞脂质过氧化物检测

试剂盒内含

50 tests 200 tests
Dye Mixture ×1 ×1
葡萄糖标准品(10 mmol/l)(红盖) 150 μl×1 600 μl×1
酶(绿盖) ×1 ×1
Assay Buffer 3.5 ml×1 14 ml×1
Reconstitution Buffer(蓝盖) 350 μl×1 1.4 ml×1

概述

葡萄糖是一种提供体内能量来源的最重要的物质,也是一种主要能量代谢指标。它不仅是糖尿病和肥胖研究的糖代谢指标,在癌症研究中,也常和乳酸一起作为体内细胞代谢的检测指标。最新的研究表明,抑制与葡萄糖代谢和脂质代谢有关的酶的活性,可以抑制癌细胞的生长。

葡萄糖检测试剂盒(Glucose Assay Kit-WST)可以定量检测能量代谢的底物-葡萄糖,通过测定WST反应的吸光度来定量细胞培养基上清液中的葡萄糖。检测限可达浓度为0.02 mmol/l的葡萄糖,适合用96孔板检测,可以同时检测多个样品。

原理

*本试剂盒可以检测细胞上清液的葡萄糖的含量,通过检测WST甲赞的吸光度来测定。另外,试剂盒里有葡萄糖标准液,可以制作标准曲线,测定样品中的葡萄糖浓度。

1611274375398374.jpg

*要测定细胞上清液以外的样品,请事先查看常见问题FAQ“是否有检测细胞上清液以外的实验例?”。

操作步骤

1622183463721345.jpg

制作葡萄糖标准曲线

可以用试剂盒中的葡萄糖标准液制作出葡萄糖标准曲线,然后通过标准曲线求出样品中的葡萄糖浓度。当葡萄糖浓度在0.5 mmol/l以上时,可以通过稀释样品进行检测。

1611287393532748.gif

实验例

用Phloretin抑制葡萄糖的摄取

1. 制备所需浓度Phloretin的Jurkat细胞悬液 (5×105 cells/ml,在RPMI培养基中含有10%的胎牛血清和1%的青霉素-链霉素)。

2. 在6孔板中接种1×106 cells/孔的细胞悬液,在37℃,5% CO2培养箱中过夜培养。

3. 将细胞悬液转移到锥形管中,在1,500 rpm离心5 min。

4. 吸取100 µl上清液至1.5 ml微型管中,用超纯水稀释30倍。

5. 按照葡萄糖标准液的制备方法制备葡萄糖标准液。

6. 在96孔板中分别加入50 µl的样品或葡萄糖标准液。

7. 在每孔中加入50 µl工作液。

8. 在37℃培养箱中培养30 min。

9. 用酶标仪检测450 nm处的吸光度,根据葡萄糖的标准曲线计算样品的葡萄糖浓度。

实验例1.jpg

Phloretin抑制葡萄糖的摄取

实验证实,细胞培养基上清液中的葡萄糖摄入量减少与Phloretin (一种葡萄糖转运抑制剂)浓度之间有依存关系。

常见问题Q&A

Q1:是否可以检测2-Deoxy-D-glucose?
A1:可以检测2-Deoxy-D-glucose。
Q2:Working Solution的稳定性如何?
A2:Working   Solution无法保存,请现配现用。由于对光不稳定,因此配制后请避光,在室温和避光条件下可保存4小时(当Working   Solution在曝光下,溶液颜色会由红色变为橙色,背景升高)。
Q3:当有还原性物质存在时是否还可以用这个试剂盒检测?
A3:如果样品中含有还原性的物质,则也会和WST染料发生显色,此时无法准确定量葡萄糖浓度。实验中如遇到以上情况,可以设定药物对照(不含细胞含药物的培养基+试剂)作为背景对照,并从标准曲线和样品的吸光度中减去它。
Q4:是否有检测细胞上清液以外的实验例?
A4:有测定细胞内葡萄糖的实验例。操作详情,请参考常见问题FAQ“Q5”。其他的样品没有实验例。
Q5:是否可以检测细胞内葡萄糖?
A5:细胞内葡萄糖也可以检测,请参考下面的样品制备步骤。
 

请准备「0.1%Triton X-100水溶液」和「滤膜(分子量:10KD )」

(1)将细胞*1悬液收于1.5 ml微量管中。

※测定所需的细胞数,需要根据细胞种类进行调整。
HepG2细胞和Jurkat细胞的测量结果如下图所示
(2)在300×g下离心5分钟,去除上清液。
(3)加入300 µl PBS,重悬细胞,在300×g下离心5分钟,除去上清液。
(4)加入250 µl细胞溶解液*2(0.1%Triton-X),裂解细胞后,在12,000×g离心5分钟。
(5)将操作(4)的上清液200 µl转移到超滤膜过滤管(分子量:10K)中,以12,000×g离心10分钟。
※当测定样品为n=3时,总共需要150 µl以上(50 µl×3)。
※离心后的滤液不超过150 µl时,请延长离心时间。
(6)将通过操作(5)得到的滤液作为测定样品。
然后按照使用说明书,测定葡萄糖浓度。
※测定试样在标准曲线范围内(0-0.5 mmol/l)内,请适当用细胞溶解液稀释,用于测定。
*1 为了检测0.02 mmol/l以上的葡萄糖,HepG2细胞数量为1×105cells以上,Jurket细胞需要2×106 cells以上的细胞数量。
*2 细胞溶解液中含有SDS会抑制显色,因此不能使用含有SDS的缓冲液。

 

Q6:一个试剂盒可以检测样品的数量。
A6:制备标准曲线和样品(n=3)时,可以检测的样品数量如下所示。

样品数.jpg

标准曲线:8个点(0, 0.0157, 0.0313, 0.0625, 0.125, 0.25, 0.5, 1 mmol/l)(n=3)

image.png

96孔板排列示意图(n=3)

Q7:可以测量L-Glucose吗?
A7:本产品用于β-D-Glucose测量,不能测量L-Glucose。

参考文献

No 检测对象 文献
1 小鼠血清 Increased levels of Aβ42 decrease the lifespan of ob/ob mice with dysregulation of microglia and astrocytes, FASEB   J., 2019,DOI: 10.1096/fj.201901028RR
2 链霉菌 Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus, J. Biosci.Bioeng., 2020,DOI: 10.1016/j.jbiosc.2019.12.002
3 HCT116细胞 Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine, Nat. Metab., 2020, 2(1), 81
4 P388白血病细胞 2-Deoxy-D-glucose enhances the anti-cancer effects of idarubicin on idarubicin-resistant P388 leukemia cell, Oncol. Lett., 2020, 20(1), 962-966
5 小鼠精子细胞 Macrophage ubiquitin‑specific protease 2 contributes to motility, hyperactivation,   capacitation, and in vitro fertilization activity of mouse sperm, Cellular and Molecular Life Sciences, 2020, doi:   10.1007/s00018-020-03683-9

*要测定细胞培养上清液以外的样品,请事先查看常见问题FAQ“是否有除检测细胞上清液以外的样品检测实验例”。

Glucose(葡萄糖)摄取能力检测试剂盒-Blue货号:UP01

Glucose(葡萄糖)摄取能力检测试剂盒-Blue货号:UP01
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

数据重现性高
葡萄糖检测试剂盒(点击查看)

产品概述

细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Blue是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

image.png

产品优势

与传统方向相比的优势! 4大特征

Glucose Uptake Probe-Blue是蓝色荧光染料,可以轻松得与其他颜色的荧光染料共染色。另外,由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 与其他荧光染料的共染色

可以根据实验需求,选择其他荧光染料与Glucose Uptake Probe进行共染色,一次检测多个指标。下图是用Glucose Uptake Probe Blue与脂肪滴(红色:Lipi-Red 货号LD03)共染色脂肪细胞分化而来的3T3-L1细胞的荧光图像。

微信截图_20211126084739.png

 

<观测条件>

细胞: 3T3-L1

检测条件:

Glucose Uptake Probe-Blue:Ex = 340-380 nm; Em = 435-485 nm

Lipi-Red:Ex = 533-557 nm; Em = 570-640 nm

② 可用荧光显微镜或流式细胞仪检测

下面是分别使用不含葡萄糖的培养基以及高葡萄糖浓度的培养基培养A549细胞并用Glucose Uptake Probe-Blue进行染色的实验结果。可以观察到高浓度葡萄糖对Glucose Uptake Probe-Blue摄入的抑制作用。结果分别用荧光显微镜和流失细胞仪进行检测。

1637887737876041.png

 

细胞:A549

检测条件

Glucose Uptake Assay Kit-Blue:Ex = 340-380 nm, Em = 435-485 nm

③ 快速检测

使用高亮度的Glucose Uptake Probe-Blue,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

1637887794786312.png

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便。

1637887806103518.png

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02的页面。

 

与传统法的比较

1637887857748069.png

*以上结果源自A549细胞实验的结果,其他细胞系的向胞外泄露的时间可能不同。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

 

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消费量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

 

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

 

详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02的页面。

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察。

 

荧光显微镜观察

1637887957732546.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM (0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

荧光显微镜观察

1637887997118332.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

 

实验例:饥饿培养诱导细胞自噬以及葡萄糖摄取能力的变化

用自噬体染色试剂DAPRed和自噬溶酶体染色试剂DALGreen染色HeLa细胞后,再用不含氨基酸的培养基饥饿培养3小时诱导细胞自噬。通过荧光显微镜观察发现DAPRed和DALGreen的荧光强度增强,证明细胞自噬的发生,另外通过Glucose Uptake Probe-Blue观察到细胞摄取葡萄糖的能力上升。

微信截图_20220127113218.png

<检测条件>

Blue: Ex = 340-380 nm, Em = 435-485 nm

Green: Ex = 450-490 nm, Em = 500-550 nm

Red: Ex = 533-557 nm, Em = 570-640 nm

Scale bar: 50 μm

常见问题Q&A

Q1:Glucose Uptake Probe-Blue具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2:Glucose Uptake Probe-Blue被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q3: Glucose Uptake Probe-Blue被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q4:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q5: 无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q6:荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q7: 用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q8:可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。
Q9: 可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q10: 如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)图片1.jpg

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。

9.荧光显微镜下观察细胞。

图片3.jpg

Q11: 目前有过检测实例的细胞有哪些?
02.png

 

Q12: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
01.png

 

规格性状

            Glucose Uptake Probe-Blue  ×1

WI Solution (50X)   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270
糖酵解/氧化磷酸化检测试剂盒
Glycolysis/OXPHOS Assay Kit
商品信息
储存条件:0-5度保存,避光
运输条件:常温

特点:

●酶标仪即可检测,无需昂贵的检测仪器

●试剂盒包含所有所需试剂 All in One Kit

●详尽的操作手册

选择规格:
50tests

规格性状

微信截图_20211227153025.png

产品概述

很多癌细胞都是主要依靠糖酵解途径产生ATP,而近年来的研究发现,如果抑制癌细胞的糖酵解途径,细胞中的主要能量代谢会从糖酵解途径向线粒体的氧化磷酸化途径转移。对于这一现象的研究,有望成为新的抗癌药物研发的靶点,并且在细胞衰老、神经退行性疾病等其他疾病的治疗和药物研发的工作中也具有潜力,因此而备受瞩目。

本试剂盒通过酶标仪就可以方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度。试剂盒中包含所有所需的试剂,可大幅减少实验前的准备工作和时间。

微信截图_20211227153549.png

三种评价方式

用Oligomycin抑制氧化磷酸化(OXPHOS)的ATP合成,或者用2-Deoxy-D-glucose(2-DG)抑制糖酵解(Glycolysis)的ATP合成,然后通过检测ATP的量(发光法)和Lactate的量(吸光度法)对下图中的①~③进行评价。

1638262234559668.png

实验例

对糖酵解抑制剂(2-DG)处理后的HeLa细胞进行糖酵解能评价和代谢途径转移评价。糖酵解能评价(左图)的结果可以看出,HeLa细胞经过糖酵解抑制剂作用后,糖酵解能明显降低。而代谢途径转移评价的结果(右图)可以看出,糖酵解抑制剂作用后,HeLa细胞内的代谢途径开始向氧化磷酸化转移,由线粒体产生的ATP明显增加。

微信截图_20220107095600.png

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可检测的样品数请见下表:

1638262534872611.png

※以上是按照不做预实验,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

1638262916311857.png

※以上是先做预实验,再做正式实验时,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

1638263343672302.png

糖酵解能评价(Lactate Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

1638263501722126.png

代谢途径转移评价(ATP Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

1638263540751974.png

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(不做预实验)

1638263591867173.png

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(做预实验)

Q:在做糖酵解能评价时,实验孔与空白孔(只含培养基)的吸光度没有变化,是什么原因?有哪些改善方法?
A:可能的原因是细胞释放的乳酸量过少,建议提高细胞数,增加培养时间(3小时⇒5小时)。
Q:是否需要通过使用蛋白质定量分析使乳酸和ATP浓度正常化?
A:Oligomycin和2-DG处理5小时的检测结果,用蛋白定量校正和不校正的结果几乎没有变化。但是,如果检测中使用其他药物时,请预先确认该药物是否会对细胞数和蛋白质的量有影响,然后再用本试剂盒检测。

1638325735596483.png

需要用蛋白质定量进行校正的时候,请参考下图中的步骤。

※在进行蛋白质定量校正的时候,由于ATP Assay的试剂的原因,不能使用ATP Assay或Lactate Assay检测时使用的细胞,请额外专门准备蛋白质定量用的细胞悬液。

1638330974173700.png

Q:Lactate Assay时,是否可以用450 nm以外的滤光片检测?
A:如果没有450 nm的滤光片,可以用490 nm滤光片检测,不过检测得到的吸光度的值要比450 nm检测时低。

1638331171803617.png

Q:发光信号是否稳定?
A:发光信号在3小时以内都稳定。不过,发光信号会受温度和光照影响,如果不能立即检测的话,请在避光和25℃环境下静置。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:  ATP检测时用的发光法,检测波长为多少?
A:由于P是通过萤光素检测,所以检测波长为556 nm。

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

 

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

葡萄糖检测试剂盒(点击查看)

凑单关联产品TOP5

NO.1.    Cell Viability Assay Kit – Luminescent Detection    细胞增殖/毒性检测-发光法(CCK-L)

NO.2.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.3.    Cell Counting Kit-8     细胞增殖毒性检测  

NO.4.    DALGreen – Autophagy Detection    细胞自噬检测

NO.5.    FerroOrange    细胞亚铁离子检测

 

产品概述

细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Green是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

1622445331924534.png

产品优势

与传统方向相比的优势! 4大特征

由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 高灵敏度

2-NBDG在水中的荧光强度很低,而本试剂盒采用的荧光染料可以进行高灵敏度的葡萄糖摄取能力检测。

1622448742785551.png

<观测条件>

细胞: A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

② 快速检测

使用高亮度的Glucose Uptake Probe-Green,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

1622448399984906.png

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便

1622600859388688.png

③  荧光酶标仪的多样品检测

2-NBDG很难用于荧光酶标仪的检测,而本试剂盒可用于荧光酶标仪的高通量筛选实验。

1614925589690463.png

<检测条件>

细胞:A549细胞

Ex: 488 nm; Em: 520 nm

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。

使用HBSS清洗细胞时

1622448547673285.png

使用WI Solution清洗细胞时

1622448568824383.png

(Scale Bar: 50 μm)

<观测条件>

细胞:A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

与传统法的比较

        Glucose Uptake Probe-Green和2-NBDG都可以用于荧光显微镜和流式细胞仪的检测。而相比较于2-NBDG的激发波长,Glucose Uptake Probe-Green对于488 nm的激发光以及GFP, FITC滤光片的适用度更高。

产品名 荧光

显微镜

荧光

酶标仪

流式

细胞仪

染料滞留时间 荧光特性
Glucose Uptake Assay Kit-Green 1 h※ λex: 507 nm, λem: 518 nm
2-NBDG × 30 min以下※ λex: 465 nm, λem: 540 nm

※A549细胞的检测结果,不同的细胞种类,染料的滞留时间可能会有差异。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消耗量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

Glucose Assay Kit-WST与本试剂盒的差别,通过下面的检测实例来说明。

实验例:用葡萄糖摄取抑制剂(Cytochalasin B)处理的HepG2细胞的葡萄糖消费量和葡萄糖摄取能力的检测。

实验的流程和检测结果:

1622603339865626.png

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察以及数值化的检测。

荧光显微镜观察

1639036970526396.png

(Scale Bar: 50 μm)

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM (0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪

1639037010253180.png

<检测条件>

Ex: 488 nm; Em: 520 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

荧光显微镜观察

1639037047647337.png

(Scale Bar: 50 μm)

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

1639037097789035.png

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基(0 or 1 μmol/l Insulin)。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

实验例3:前脂肪细胞和细胞脂肪细胞的葡萄糖摄取能力的比较

使用本试剂盒对前脂肪细胞(preadipocyte)和脂肪细胞(adipocyte)的葡萄糖摄取能力进行高灵敏度检测。

荧光显微镜观察

1639037132338146.png

(Scale Bar: 50 μm)

<观测条件>

细胞:preadipocyte, adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

1639037210721325.png

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.前脂肪细胞和脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

 

实验例4:饥饿培养引起的细胞自噬和葡萄糖摄取变化

用自噬体染料DAPRed和自噬溶酶体染料DALGreen染色HeLa细胞后,用不含氨基酸的培养基培养3小时诱导细胞自噬。通过DAPRed和DALGreen的荧光强度增高确认细胞发生了细胞自噬,另外通过使用Glucose Uptake Probe-Blue发现细胞摄取葡萄糖的能力上升。

微信截图_20211209152737.png

(Scale Bar: 50 μm)

 

<检测条件>

荧光显微镜

Blue: Ex = 340-380 nm, Em = 435-485 nm

Green: Ex = 450-490 nm, Em = 500-550 nm

Red: Ex = 533-557 nm, Em = 570-640 nm

常见问题Q&A

Q1: Glucose Uptake Probe-Green具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2:目前有过检测实例的细胞有哪些?
A:目前的检测实例细胞系请参考下表:
细胞种类 Probe stock solution

的稀释倍率

染色时间
人肺腺癌细胞 A549 x 500 15 min
人肝癌细胞 HepG2 x 500 15 min
前脂肪细胞 preadipocyte(3T3-L1) x 500 15 min
脂肪细胞 adipocyte(3T3-L1) x 500 15 min
恶性黑色肿瘤细胞 MO5 x 500 15 min
小鼠成肌细胞 C2C12 x 500 5 min
人星形胶质瘤细胞 U-251 MG x 500 15 min
人子宫颈癌细胞 HeLa x 500 15 min
小鼠肺癌细胞 3LL x 50000 15 min
T细胞 CD4+ T cell x 50, x500 15 min
小鼠巨噬细胞 J774.1 x 500 15 min
线虫 N2 x 500 90 min
Q3:Glucose Uptake Probe-Green被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q4:Glucose Uptake Probe-Green被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q5:用荧光酶标仪检测时候,对孔板有什么特别要求吗?
A:需要使用荧光检测用的细胞培养板。
Q6:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q7:无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q8:荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q9:Glucose Uptake Probe-Green对细胞有毒性吗?
A:使用同仁化学研究所的Cell Counting Kit-8(货号:CK04)对A549细胞的Glucose Uptake Probe-Green细胞毒性进行了检验,没有发现细胞毒性的产生。
Q10:用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q11:可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。

 

Q12:可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q13:如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)图片1.jpg

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。 请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并 在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。

9.荧光显微镜下观察细胞。

图片3.jpg

Q14: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
02.png

规格性状

            Glucose Uptake Probe-Green  ×1

WI Solution (50X)   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

Glucose(葡萄糖)摄取能力检测试剂盒-Red货号:UP03

Glucose(葡萄糖)摄取能力检测试剂盒-Red货号:UP03
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

选择规格:
1 set
数据重现性高
葡萄糖检测试剂盒(点击查看)

产品概述

        细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Red是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

image.png

产品优势

与传统方向相比的优势! 4大特征

Glucose Uptake Probe-Red是红色荧光染料,可以与红色野外其他颜色的荧光染料共染色。另外,由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 与其他荧光染料的共染色

可以根据实验需求,选择其他荧光染料与Glucose Uptake Probe进行共染色,一次检测多个指标。下图是用Glucose Uptake Probe Red与脂肪滴(绿色:Lipi-Green货号LD02)共染色脂肪细胞分化而来的3T3-L1细胞的荧光图像。

微信截图_20211126085723.png

<观测条件>

细胞: 3T3-L1

检测条件:

Glucose Uptake Probe-Red:Ex = 533-557 nm; Em = 570-640 nm

Lipi-Green:Ex = 450-490 nm; Em = 500-550 nm

② 可用荧光显微镜或流式细胞仪检测

Glucose Uptake Probe-Red除了荧光显微镜和流式细胞仪以外还可以用荧光酶标仪进行检测。下面是A549细胞的葡萄糖摄取能力的检测结果,可以明显观察到高浓度葡萄糖对Glucose Uptake Probe-Red摄入的抑制作用。

1637888278615746.png

细胞:A549

检测条件

Glucose Uptake Assay Kit-Red:Ex = 545 nm, Em = 605 nm

 

③ 快速检测

使用高亮度的Glucose Uptake Probe-Blue,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

1637888310171718.png

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便。

1637888345989674.png

 

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02的页面。

与传统法的比较

1637888399322547.png

*以上结果源自A549细胞实验的结果,其他细胞系的向胞外泄露的时间可能不同。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

 

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消费量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

 

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

 

详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02 的页面。

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察。

荧光显微镜观察

1637888473394565.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM(0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

 

荧光显微镜观察

1637888494750338.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

常见问题Q&A

Q1: Glucose Uptake Probe-Red具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2: Glucose Uptake Probe-Red被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q3: Glucose Uptake Probe-Red被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q4: 用荧光酶标仪检测时候,对孔板有什么特别要求吗?
A:需要使用荧光检测用的细胞培养板。
Q5:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q6: 无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q7: 荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q8: 用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q9: 可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。
Q10: 可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q11: 如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)图片1.jpg

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。 请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并 在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。 9.荧光显微镜下观察细胞。

图片3.jpg

Q12: 目前有过检测实例的细胞有哪些?
02.png
Q13: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
03.png

规格性状

            Glucose Uptake Probe-Red                           ×1

WI Solution (50X)                                   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

NADP/NADPH Assay Kit-WST试剂盒货号:N510

NADP/NADPH Assay Kit-WST试剂盒货号:N510
NADP/NADPH检测试剂盒
NADP/NADPH Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 数据可靠,不会与NAD+及NADH反应

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    Lactate Assay Kit-WST    乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

试剂盒内含

1611186779448168.jpg

概述

烟酰胺腺嘌呤二核苷酸磷酸(NADP) 是磷酸戊糖途径(一种细胞代谢途径)反应中一种重要的辅因子。NADP以氧化态NADP+和还原态NADPH的形式存在于细胞中。NADPH不光对脂肪酸、胆固醇而且对还原型谷胱甘肽的生成至关重要。另外最近的研究表明,NADP+/NADPH通过限制碳水化合物的摄入来延长寿命与NADP+/NADPH有很大关联。

NADP/NADPH Assay Kit-WST能定量检测细胞中总NADP+/NADPH、NADPH和NADP+的量,并计算它们的比值。细胞内NADPH水平可以用试剂盒内的Extraction Buffer裂解细胞后加热进行定量检测。而细胞内的NADP+水平则可以通过总NADP+/NADPH减去NADPH的量计算得到。

原理

1611188214208217.jpg

技术资料

分别检测NADP+和NADPH

1622538182624823.jpg

分别测定NADP+和NADPH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。 通过加热细胞裂解液能单独检测细胞内NADPH量,而细胞内的NADP+量则可以通过总NADP+/NADPH量减去NADPH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准样品。使用超过12个样品时,您需要准备单独的超滤管。

使用NADP+/NADPH作为标记的研究

1622538301925754.jpg

检索来源:Google Scholar

检索关键词:

NADP/NADPH:“NADP/NADPH”

线粒体:”NADP/NADPH”Mitochondria

癌:”NADP/NADPH”Cancer

氧化应激:”NADP/NADPH”Oxidative Stress

孔板检测中数据的可靠性

通过同时检测试剂盒内的标准溶液,可以对浓度在0.01-1 μmol/l的总NADP+/NADPH和NADPH进行定量。如果样品中的总NADP+/NADPH的浓度>1 μmol/l,可以通过稀释样品来调节。实验证实本试剂盒(NADP/NADPH Assay Kit-WST)不会与NAD+及NADH反应。

1622538475403958.jpg

操作步骤

(1)按下图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

1622538669213787.jpg

 

(2)在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3)在37°C培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4)用酶标仪在450 nm处检测吸光度。

(5)用标准曲线测定样品中总NADP+/NADPH和NADPH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NADP+的量可用下列计算公式计算:总NADP+/NADPH-NADPH的量计算得到。

NADP+=总NADP+/NADPH-NADPH

实验例

细胞样品检测实验例 (加入抗癌药物Doxorubicin)

向Jucket细胞中 (3×106 cells)加入终浓度为500 nmol/l的Doxorubicin (Dox),在培养24 h后检测NADP+/NADPH 比值和还原型/氧化型谷胱甘肽的比值(GSH/GSSG)。用本试剂盒检测PBS清洗后的细胞的NADP+/NADPH比值,用 GSSG/GSH Quantification Kit II (货号:G263) 检测谷胱甘肽的比值。

在细胞内加入DOX后,产生的ROS(H2O2) 破坏了DNA、DNA修复酶 (PARP*) 被激活, 并且NADP+被其消耗。为了补充不足的NADP+,NADPH氧化酶被激活,结果在数据中则会表现为NADP+的增加。与此同时还原型谷胱甘肽 (GSH) 会被产生的ROS所消耗,因此GSH/GSSG的比值会下降。

1622538702215850.jpg

常见问题Q&A

Q1:该试剂盒可以检测多少个样本?
A1:

1622538792123681.jpg

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:可以单独购买过滤管吗?
A2:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q3:工作液稳定吗?
A3:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q4:样品颜色没有变化,是什么原因?
A4:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269
谷氨酸的定量检测试剂盒
Glutamate Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamate的定量

选择规格:
1set

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glutamine Assay Kit-WST    谷氨酰胺的定量检测

NO.3.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

1607220085966457.png

产品概述

谷氨酸不仅用于蛋白质和谷胱甘肽的生物合成,而且还作为神经递质发挥重要作用,谷氨酸过多被认为是引起神经退行性疾病如阿尔茨海默氏病的原因。根据文献报道,胱氨酸/谷氨酸的转运蛋白(xCT)具有吸收胱氨酸放出谷氨酸的功能,而抑制xCT会诱导细胞发生铁依赖性的死亡—铁死亡,近年来针对xCT的癌症研究越来越多。

Glutamate Assay Kit-WST是谷氨酸的定量检测试剂盒。细胞培养基中或细胞内的谷氨酸都可以通过WST的还原反应进行定量,谷氨酸定量的最低浓度为5 μmol/l。此外,本试剂盒还可以使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酸进行定量。此外,本试剂盒还包含谷氨酸标准溶液,可用于通过制作标准曲线来定量样品中谷氨酸的浓度。

 

image.png

操作步骤

只需将细胞培养上清液或组织/细胞裂解溶液转移到孔板中,加入试剂后孵育即可。

image.png

实验例

标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

1609314887231458.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

image.png

铁死亡研究中谷氨酸和谷胱甘肽的检测实验例:

据报道通过弹性蛋白,抑制胱氨酸/谷氨酸转运体(xCT)造成铁依赖性的细胞死亡,即细胞铁死亡。在通过弹性蛋白处理后的A549细胞中,确认谷氨酸的释放量和细胞内谷胱甘肽的量。结果显示,通过弹性蛋白处理的细胞中谷氨酸释放的量减少,抑制胱氨酸的摄取,从而导致谷胱甘肽的量减少。

image.png

Sulfasalazine (SSZ) 引起的细胞内代谢变化实验例:

将已知会抑制胱氨酸/谷氨酸转运体(xCT)的Sulfasalazine(SSZ)加入到A549细胞后,确认谷氨酸释放量、细胞内ATP、α-酮戊二酸(α-KG)、谷胱甘肽(GSH)以及ROS的变化。

结果显示,SSZ加入后细胞内ATP、谷胱甘肽(GSH)和谷氨酸释放量减少,细胞内α-酮戊二酸和ROS增加。1612749142364629.png

<使用产品>

· 细胞内GSH:GSSG/GSH Quantification Kit II(货号:G263)

· 细胞内ROS:ROS Assay Kit -Highly Sensitive DCFH-DA-(货号:R252)

· 细胞内ATP:ATP Assay Kit-Luminescence(货号:A550)

· 细胞内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(货号:K261)

<实验条件>

细胞:A549细胞 (1 x 106 cells)  药物处理时间:48 h

1622087224726487.png

1622087244529743.png1622087268638819.png

参考文献) Shogo Okazaki et al.,”Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma“.Cancer Sci.,2019,doi:10.1111/cas.14182.

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量是多少?
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 24个样品(参照下图)

谷氨酸标准溶液和样品的96孔板排列示意图(n=3)

1609381817863934.png

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。

※Working solution配制后,避光室温条件下4 h稳定。当暴露于光线下,溶液的颜色会变成褐色。

Q3:是否可以定量D-Glutamate?
A3:该试剂盒是用于L-Glutamate定量,无法定量D-Glutamate。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酸浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解样品也可以-20°C保存1个月。 但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酸浓度可能低于检测限(5 µmol/l),谷氨酸浓度低于5 µmol/l的样品无法用该试剂盒检测。

如果待测样品被稀释,则稀释样品中含有的谷氨酸浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酸浓度调整到最低检测限以上。

Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622087017370785.png

Glutamine Assay Kit-WST试剂盒货号:G268

Glutamine Assay Kit-WST试剂盒货号:G268
谷氨酰胺定量检测试剂盒
Glutamine Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamine的定量

选择规格:
1set

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.3.    Glutamate Assay Kit-WST    谷氨酸的定量检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

1607220500456163.png

产品概述

谷氨酰胺是TCA循环的中间体α-酮戊二酸的主要来源,并且是用于核酸和其他氨基酸合成及能量产生的重要物质。根据文献报道特别是在癌细胞中,谷氨酰胺作为底物可促进Glutaminolysis的生成,而Glutaminolysis是产生α-酮戊二酸的途径之一。同时Glutaminolysis还可以消除活性氧并减少氧化型谷胱甘肽。

Glutamine Assay Kit-WST是用于定量检测谷氨酰胺的试剂盒。无论是培养基内还是细胞内的谷氨酰胺均可以通过WST的还原反应进行定量,可检测的最低浓度为5 μmol/l。此外,本试剂盒还可使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酰胺进行定量。此外,本试剂盒还包含谷氨酰胺标准溶液,可用于通过制作标准曲线来定量样品中谷氨酰胺的浓度。

1606449794882504.png

操作步骤

*向谷氨酰胺标准溶液和含有谷氨酰胺酶的样品孔中加入谷氨酰胺酶溶液,并在样品(不含谷氨酰胺酶溶液)的每个孔中加Reaction Buffer。

由下式算出检测样品中的谷氨酰胺浓度。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

1606455360524924.png

实验例

标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

image.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

1606455940746088.png

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量。
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 12个样品(参照下图)

谷氨酰胺标准溶液和样品的96孔板排列示意图(n=3)

image.png

 

*当n=3时,至少需要240 μl(每孔40 μl×6孔)。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。
Q3:是否可以定量D-Glutamine?
A3:该试剂盒是用于L-Glutamine定量,无法定量D-Glutamine。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酰胺浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解液样品也可以-20°C保存1个月。但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酰胺浓度可能低于检测限(5 µmol/l),谷氨酰胺浓度低于5 µmol/l的样品无法用该试剂盒检测。如果待测样品被稀释,则稀释样品中含有的谷氨酰胺浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酰胺浓度调整到最低检测限以上。
Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622086833365247.png

Cell Counting Kit-Luminescence试剂盒货号:CK18

Cell Counting Kit-Luminescence试剂盒货号:CK18
细胞活性(ATP检测)
ATP Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 操作简便,检测仅需10分钟

● 灵敏度高,微量细胞也可检测

● 悬浮细胞和原代细胞适合

选择规格:
200 tests

 

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

NO.3.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.4.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.5.    ROS Assay Kit -Highly Sensitive DCFH-DA-    ROS检测

产品原理

ATP是生物体内最直接的能量来源,在肌肉收缩、代谢反应、主动运输等方面被广泛使用,甚至被称作生物体内的能量货币。同仁化学研究所开发的Cell Counting Kit-Luminescence试剂盒是一种通过Luciferase来确定细胞中的腺苷三磷酸(ATP)的细胞增殖-毒性检测试剂盒。

本试剂盒只需将各试剂混合后加入孔板,10 分钟后即可检测。不需要去除培养基、清洗细胞等复杂的操作。此外,本试剂盒还有诸如发光的半衰期在3 小时以上、数据的重现性高 、兼容96孔板 、384孔板的多样品检测等诸多优点。

1622096109221126.png

图1. Cell Counting Kit Luminescence 检测原理

实验注意事项

检测方法:多功能酶标仪

检测结果:化学发光值

image.png

注意:该试剂盒只能比较实验组对照组结果,但是不能完全定量检测

(试剂盒内不含标准品)

实验操作步骤

1. 白色 96 孔板中,每孔加入 100 μl 细胞悬液(白色 384 孔板,每孔加入 25 μl 细胞悬液)。

*为了获得更准确的检测结果,建议每个实验组至少设置三个复孔(n=3)。

2. 各孔中加入 100 μl Working solution(白色 384 孔板,每孔加入 25 μl Working solution)。

*气泡会对实验结果产生影响,如果孔中有气泡请尽量清除。 使用电动移液器时,建议使用反向吸液模式(RevPIP Mode)。

*加入 Working solution 后,建议用酶标仪的振荡混匀功能震荡 2 min。由于光照会影响检测结果,如果必须在 有光源的地方震荡,建议用铝箔纸包覆孔板。

3. 将孔板静置于温度设定在 25℃的酶标仪内 10 min。

*如果酶标仪没有温度设定的功能,请将孔板至于 25℃培养箱或 25℃左右室温下,避光培养 10 min。

*为了保证发光信号的稳定性,建议此处的培养时间不要低于 10 min。

4. 检测发光值(RLU)。

CCK-L,仪器检测实验例,详见如下:(实验例仅供参考)

细胞内ATP活性检测(CCK-L)的仪器设置

参考文献

编号 文献 IF
1 Impact   of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy
on the outcomes in patients with refractory lung cancer, ESMO Open,2021,   6(2):100094
2021 6.5
2 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells   ,Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 5.3

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297
氧消耗量检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 适用于普通荧光酶标仪

● 不需要昂贵的仪器、特殊介质和孔板

● 带OCR计算表的一体式试剂盒

选择规格:
100tests

产品规格

1669943130546083.png

OCR是线粒体功能的重要指标

由于氧主要在线粒体氧化磷酸化产生三磷酸腺苷(ATP)的过程中消耗,因此其耗氧率(OCR)是分析线粒体功能的指标。众所周知,癌细胞通过糖酵解途径产生ATP,其效率低于氧化磷酸化。在免疫细胞中,氧化磷酸化的优势是抑制抗肿瘤,而糖酵解途径的优势促进抗肿瘤作用。因此,细胞的OCR作为能量代谢的检测指标。

图片1.png

图片2.png

产品概述

细胞外氧消耗量试剂盒包括氧气探针,其具有随着介质中氧气浓度的降低而增加荧光强度的特性,矿物油阻止氧气从空气中流入。

在用荧光显微镜根据细胞外氧浓度测量荧光强度之后,根据Stern-Volmer方程计算细胞的OCR(自动计算表)。

1670202251340521.png1670202328366763.png

*该产品在群马大学Toshitada Yoshihara博士的指导下实现了产品化。

与现有方法比较

到目前为止,OCR测量需要昂贵的设备,如通量分析仪,实时动态检测酶标仪,以及酶标仪的功能调节。该试剂盒推荐给初此使用的人,因为它可以与常规荧光酶标仪一起使用,并附带所有必要试剂的完整包装。

image.png

与石英分析仪对比

石英分析仪(XFe24)和本试剂盒在相同条件下(细胞类型、细胞数量和FCCP浓度)进行测量。

得到XFe24与本试剂盒相关氧消耗速度变化的数据。

图片6.png

细胞种类: HepG2

细胞数: 5×10⁴ cells/well

试剂: FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone)

FCCP 浓度: 2 μmol/l

实验例:抑制线粒体电子传输链

用抗霉素刺激大鼠细胞,评估线粒体电子运输链抑制后细胞状态的变化,检测多种指标。

结果表明,电子传输链的抑制导致(1)线粒体膜电位的降低和(2)OCR的降低。此外,观察到(3)整个糖酵解途径的NAD+/NADH比率降低,这是由于丙酮酸到乳酸的代谢增加,以维持糖酵解通路;(4)由于活性氧(ROS)增加,GSH耗竭;(6)由于谷胱甘肽生物合成所需NADH减少,NADP+/NADPH比率增加。

图片10.png

1669944135247426.png图片12.png1669944181694051.png

图片14.png1669944219241446.png图片16.png

图片17.png

实验例:细胞最大呼吸能力评估

在HepG2细胞中,通过FCCP刺激后OCR值的变化来评估细胞的最大呼吸。

在FCCP浓度分别2µmol/l和4µmol/l 测量OCR。与2µmol/l相比,在4µmol/l时观察到OCR降低,表明在2µmol/l FCCP时最大呼吸。
图片9.png1669943932873010.png

 

细胞: HepG2

细胞数: 5×104 cells/well

试剂: FCCP

FCCP 浓度 2, 4 μmol/l

Q&A

Q:本试剂盒可以检测多少样本?
A:当测试一种细胞类型的相同数量的细胞时,可以测量24个样品。

*如果实验中使用了两种以上的细胞类型或多个细胞编号,则必须准备单独的空白和对照,并且可以测量的样本数量会有所不同。

有关详细信息,请参考手册中的板布局示例。

Q:悬浮细胞有什么实验案例吗?
A:我们准备了一个大鼠细胞实验的例子。<说明>

(1) 将大鼠细胞(3.0×106细胞/ml)悬浮于RPMI培养基中作为空白3,将大鼠细胞(3.0×106细胞/ml)悬于工作溶液中作为对照或样品。将细胞接种在100µl(300000个细胞/孔)的96孔黑色透明底部微孔板中。

 

(2) 向空白1中加入100µl RPMI培养基,向空白2中加入100μl工作溶液。

 

(3) 将微孔板放置在预先设定为37°C的读板器中,孵育30分钟。

 

(4) 向空白1、空白2、空白3和对照品中加入10µl RPMI培养基。

 

(5) 将用RPMI培养基稀释的样品溶液(抗霉素或FCCP溶液)分10µl加入样品中。

 

(6) 加入样品溶液后,立即向每个孔中加入一滴矿物油。

 

(7) 将微板放置在37°C的平板读数器中,孵育5分钟。

 

(8) 在一个时间过程中,用荧光板读取器每10分钟测量一次强度,持续200分钟(Ex:500nm,Em:650nm,底部读数)。

(9) OCR值通过将获得的强度值输入下载的专用Excel计算表来计算。

每孔所需的样品和试剂数量。

图片18.png

1669944613174749.png

Q:如何使用此试剂盒计算OCR?
A:请使用Excel计算表并遵循以下说明

<OCR计算程序概述>

(1) 将OCR测量获得的强度值输入计算表,使用Stern-Volmer公式自动计算氧含量(nmol)。

(2) 根据时间(min)与氧含量(nmol)的关系图,检查所有测量条件下获得的线性范围。

(3) 计算步骤(2)中确认的时间(min)和氧含量(nmol)范围内的斜率。

(4) 根据步骤(3)中计算的斜率计算OCR(pmol/min)。

有关详细信息,请参阅手册中的“分析”。

*需要计算OCR的客户请至【网站首页】-【技术支持】-【实验工具】即可找到OCR计算器

Q:矿物油对细胞有细胞毒性吗?
A: 当通过Cell Counting Kit-8细胞毒性测定测定时,在用矿物油处理的细胞中未观察到毒性。
Q:OCR检测后如何测量细胞数
A:使用核酸探针(代码:H342)Hoechst 33342测量每个孔的细胞数,这是该方案的一个示例。

<说明>

(1) 将细胞接种到孔中进行OCR测量(液体体积:100μl/孔)。

(2) 将制备校准曲线的细胞接种到孔中(液体体积:100μl/孔)。

(3) OCR根据说明书进行测量。

(4) 向孔中加入10µl/孔的介质进行校准(使介质体积与OCR测量孔的体积对齐至110µl/孔)。

(5) 将用培养基稀释的Hoechst 33342溶液(10µg/ml)以100µl/孔的速度添加到所有孔中。

*从油的顶部添加OCR测量孔。

(6) 在37°C下培养30分钟。

(7) 用荧光板读数器(Ex:350nm,Em:461nm)测量。

(8) 制备校准曲线(X轴:细胞数量,Y轴:荧光强度),并计算用于OCR测量的孔中的细胞数量。

图片21.png

Q:可以长期存储工作液吗
A 工作液不能储存,需要现配现用。
Q:氧探针或矿物油的反复冷冻和解冻是否会影响测定?
A 我们已经证实,氧气探针和矿物油的反复冻融循环对测定没有影响。

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552
ADP/ATP比率检测试剂盒
ADP/ATP Ratio Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

●可获得稳定的ADP/ATP比值

●溶液配制后可以保存

●冷藏保存(无需解冻操作)

选择规格:
100tests

产品概述

通常情况下,当细胞内ATP浓度降低时,会由二磷酸腺苷(ADP)重新合成为ATP,以维持细胞内一定的ATP浓度。当产生ATP的相关代谢发生紊乱时,ADP无法再合成为ATP,ATP却不断地分解成为ADP,导致ADP/ATP的比例上升。而ADP/ATP比率的变化与细胞凋亡、细胞自噬、能量代谢等诸多途径息息相关,因此经常被作为细胞活性的指标之一检测。

微信截图_20211130130502.png

规格性状

1642572478856777.png

检测原理

本试剂盒可以检测细胞中ADP与ATP的比率。首先用萤火虫荧光素酶法检测细胞内的ATP。

微信截图_20211130130953.png

之后用酶将细胞内的ADP全部转化为ATP,再用相同的发光原理检测ATP,即可算出细胞内ADP/ATP的比率。

微信截图_20211130131009.png

与其他公司产品比较

1638249168235182.png

本试剂盒的检测结果,不受ATP和ADP的总量影响,比值的结果稳定。

微信截图_20211130131146.png

实验例

使用Staurosporine诱导细胞凋亡后,用本试剂盒检测细胞中ADP/ATP的比值。另外,用激光共聚焦显微镜和流式细胞仪检测Annexin V-FITC/PI染料标记的Staurosporine诱导凋亡的细胞。

结果显示,Staurosporine诱导后的细胞中ADP/ATP的比例明显上升。相同条件的细胞中也观察到磷脂酰丝氨酸(PS)的外翻以及细胞膜破损。说明凋亡细胞中的ADP/ATP的比率上升。

 

<ADP/ATP比的检测结果>

 

1638249248457134.png

1638336486572893.png

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可以检测32个样品,96孔板的孔板设置请参考说明书。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:配制好的working solution是否可以保存?
A:本试剂盒共包含4种working solution,ADP working solution无法保存,请现配现用。其他3种的保存条件及保存时间如下:

1638336266497998.png

Q:确定最佳细胞数的方法是什么?
A:配制梯度浓度的细胞悬液播种至孔板中,按照最终实验相同的条件进行培养。使用本试剂盒制作标准曲线(参照图1),选择呈直线性的范围,并且ADP/ATP比率(参考图2)在相对稳定的范围内进行最终实验的检测。下图的情况,最细胞数的范围是2,000~4,000个。

1638336413353486.png

Q:发光法检测波长为多少?
A:由于是通过萤光素检测,所以检测波长为556 nm。

MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 特异性的在细胞中线粒体内聚集

● 可以检测线粒体膜内的脂质过氧化物

● 可以在488 nm和535 nm的荧光波长下进行检测

选择规格:
5μg*3

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

1622438023765086.png

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

image.png

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

image.png

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

image.png

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

image.png

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

image.png

线粒体内单线态氧荧光探针试剂货号:MT05

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05
线粒体内单线态氧荧光探针试剂
Si-DMA for Mitochondrial Singlet Oxygen Imaging
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C35H37ClN2Si

分子量:

549.22

特点:

 

● 能够对活细胞进行荧光成像

● 对单线态氧的高选择性

选择规格:
2μg
线粒体检测方案

       单线态氧(Singlet Oxygen,1O2)是一种具有强氧化性的活性氧(ROS),是造成皮肤斑点及皱纹的重要因素。在化妆品等研究中,去除单线态氧是重要的研究目的。在癌症研究领域,单线态氧在光动力疗法(PDT:一种采用光敏药物和激光活化治疗肿瘤的新兴抗癌疗法)中起到关键作用。因此检测活细胞内的单线态氧对于了解PDT的抗癌机理至关重要。但是现有的荧光探针由于不能穿透细胞膜,所以无法用于活细胞检测。

Majima等人合成了一种由含硅罗丹明和蒽环构成的新型远红外荧光探针Si-DMA,分别作为发色团和单线态氧反应位点。当存在单线态氧时会在Si-DMA的蒽环部位生成内过氧化物,Si-DMA的荧光强度会增强1)。在7种不同活性氧中,Si-DMA能够特异性地检测单线态氧(图3)。另外在用5-氨基乙酰丙酸(5-ALA,一种血红素前体)处理细胞后,Si-DMA可以实时观察到线粒体中原卟啉IX产生单线态氧的变化情况(图4)。

原理

b1355d49e26be976070035409c8676611a8e493d.jpg

图1. Si-DMA的细胞染色原理

荧光特性

MT05光谱图R.jpg

图2. Si-DMA与单线态氧反应后的激发和发射光谱

反应特异性

1606815534394483.jpg

图3. Si-DMA对各种ROS的选择性

实验例

实验例1  荧光显微镜观察用5-氨基乙酰丙酸 (5-ALA) 处理后的HeLa细胞中的单线态氧

1. 接种200 μl HeLa细胞 (2.4×105 cells/ml) 在μ-slide 8孔板 (ibidi) ,培养基为DMEM (10%FBS,1%青霉素-链霉素),

在37℃ 5% CO2培养箱中过夜培养。

2. 用200 μl Hanks’ HEPES 缓冲液洗涤细胞2次。

3. 在μ-slide 8孔板中加入200 μl 含5-ALA的Hanks’ HEPES 缓冲液 (150 μg/ml),在37℃ 5% CO2培养箱中培养4 h。

4. 用Hanks’ HEPES 缓冲液洗涤细胞2次。

5. 加入200 μl Si-DMA工作液(40 nmol/l), 在37℃ 5% CO2培养箱中培养45 min。

6. 用200 μl Hanks’ HEPES缓冲液洗涤细胞2次。

7. 加入200 μl Hanks’ HEPES缓冲液,并用荧光显微镜进行观察。

1606450527281710.jpg

Si-DMA检测5-ALA处理的HeLa细胞线粒体中的单线态氧的荧光成像

5-ALA处理过的HeLa细胞经过2.5 min照射后,Si-DMA的荧光增强,因此Si-DMA可以用于实时监测线粒体中原卟啉IX产生的单线态氧。

滤镜 (波长/带通型滤光片)

荧光成像:600±25 nm (Ex), 685±25 nm (Em)

实验例2  线粒体中的单线态氧检测 

MT05实验例2.jpg

用终浓度为50 μmol/l的过氧化氢和终浓度为50 μmol/l的次氯酸刺激或不刺激HeLa细胞,用Si-DMA检测到细胞中产生的单线态氧。和线粒体染料(MitoBright Green: MT06)共染,特异性地在线粒体中检测到了单线态氧。

波长(激发波长/发射波长)

Si-DMA: 600±25 nm/685±25 nm

MitoBright Green: 488 nm/501-563 nm

实验例3  观察用H2O2处理Primary Hepatocytes细胞后产生的单线态氧

MT05实验例3.jpg

Si-DMA检测用H2O2刺激Primary Hepatocytes细胞后产生的单线态氧荧光成像

实验条件:

用10 mM H2O2刺激Primary Hepatocytes 20 min。

细胞数量:1×104/dish

容器:Nest 15 mm共聚焦培养皿801002

染色条件:在37℃ 5% CO2培养箱中染色45 min

Si-DMA工作液浓度:100 nmol/l

检测仪器:激光共聚焦显微镜

仪器品牌:Leica,Cambridge, UK

仪器型号:BMI-6000

Ex:600 nm,Em: 685 nm

(以上数据由东方肝胆外科医院信号转导实验室友情提供)

常见问题Q&A

Q1、本试剂盒与现有方法相比有什么优势?
A1:本试剂盒的优点是“能够对活细胞进行荧光成像”和“对单线态氧的高选择性”。在操作说明中有详细的实验数据。
Q2、DMSO Stock Solution的稳定性怎么样?
A2:DMSO Stock Solution配制后在-20℃及避光条件下可以保存大约1个月,建议根据每次的用量进行分装保存。
Q3、配制Working Solution可以用Hanks’ HEPES以外的缓冲液吗?
A3:还可以用HBSS缓冲液。
Q4、Working Solution的稳定性怎么样?
A4:Working Solution不稳定,请在配制当天使用。

铁离子荧光探针—Mito-FerroGreen货号:M489

铁离子荧光探针—Mito-FerroGreen货号:M489
铁死亡荧光试剂 (Fe2+荧光法)
Mito-FerroGreen
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

● 对二价铁离子的高度选择性和高灵敏度

● 适用于通用滤光片

选择规格:
50μg*2
铁死亡检测方案
产品概述

研究证实铁是生物体内量最多的过渡金属元素。其参与多种生理活动。近几年,细胞内的游离铁离子由于具有很高的反应性,和细胞损伤、死亡有一定的关联而得到了越来越多的关注。在细胞内游离铁离子以稳定的Fe2+和 Fe3+形式存在。从细胞内的还原环境,金属转运体及Fe2+的水溶性考虑,认为揭示细胞内Fe2+的行为比Fe3+更重要。Mito-FerroGreen是一种新型荧光探针,用于检测线粒体 (铁硫簇和血红素蛋白的合成场所) 内亚铁离子Fe2+。

该产品已在岐阜药科大学药物化学实验室的 永澤秀子 和 平山祐 博士的指导下开发。Mito-FerroGreen和Fe2+反应后的荧光强度上升不可逆,与Fluo-3(货号:F019)这类可以实时监测钙离子的荧光探针有所不同。

测定原理

image.png

产品特点

铁离子检测试剂的选择

可以根据自己的实验方法和实验仪器选择检测试剂

 

FerroOrange Mito-FerroGreen
细胞内分布 细胞内 线粒体
荧光特性 λex : 543 nm、λem : 580 nm λex : 505 nm、λem : 535 nm
检测仪器 荧光显微镜 荧光显微镜 (FITC、GFP)
(滤镜)
检测对象 活细胞 活细胞
染色次数 24 μg可染色35 mm dish 17块板 50 μg可染色35 mm dish 5块板
(终浓度 1 μmol/l時) (终浓度 5 μmol/l時)

实验例

1.线粒体定位

为了确认Mito-FerroGreen的是否特异性地在线粒体内定位,与线粒体染色试剂(MitoBright Deep Red※)一同进行染色,实验结果证实了Mito-FerroGreen选择性地染色在线粒体内。

向HeLa细胞中添加5μmol/ l的Mito-FerroGreen和200 nmol/l的线粒体染色探针MitoBright Deep Red,并在CO2培养箱中培养30分钟,然后添加100μmol/ l的硫酸铁铵(II),并将混合后的细胞溶液在CO2培养箱中培养1小时后通过观察荧光。

1606291977965574.png

Mito-FerroGreen

激发波长:488 nm

发射波长:500-565 nm

MitoBright Deep Red

激发波长:640 nm

发射波长:656-700 nm

2.线粒体内的铁离子荧光成像

在含有血清的MEM培养基中接种HeLa细胞,并加入Mito-FerroGreen,通过荧光检测HeLa细胞众线粒体内的二价铁(左图)。而在添加了铁离子的HeLa细胞中,观察到了Mito-FerroGreen的荧光明显增强(中间图)。在添加了铁螯合剂的细胞中,几乎未观察到Mito-FerroGreen的荧光(右图)。 以这种方式,证实了线粒体中铁含量的差异和荧光强度的差异是成相关性的。

image.png

3.对二价铁离子的高度选择性和高信号

向1ml 50mmol/l HEPES Buffer(pH7.4)中加入2μl 1mol/l Mito-FroGreen、2μl 10mmol/l各种金属以及20μl 1mg/ml酯化酶,在室温下反应1小时后测定荧光强度。

激发波长:500 nm

发射波长:535 nm

image.png

4.适用于通用滤光片

Mito-FerroGreen的激发波长为488nm,最大激发波长可达505nm。

向3ml 50 mmol/l HEPES Buffer (pH7.4) 中加入 6μl 1mol/l Mito-FroGreen、6μl 10mmol/l硫酸铵铁(Ⅱ)以及20μl 1mg/ml酯化酶。在37℃下反应1小时后检测荧光强度。

激发波长:500 nm

发射波长:535 nm

image.png

MitoBright IM Red for Immunostaining试剂货号:MT15

MitoBright IM Red for Immunostaining试剂货号:MT15
免疫荧光用线粒体荧光染料
MitoBright IM Red for Immunostaining
商品信息
储存条件:-20度保存
运输条件:室温

特点:

● 标记稳定性强、特异性高

● 可用于免疫荧光共染色

选择规格:
20μl
20μl*3
可在含血清的培养基中染色
更多线粒体检测方案(点击查看)

规格性状

image.png

产品概述

线粒体不仅是细胞中产生能量的场所,也是与癌症、衰老、神经退行性疾病(例如,阿尔茨海默症、帕金森症)等密切相关的最重要的细胞器之一。

近年来,随着显微镜技术的发展,有关细胞器的研究正在由原来的“单独研究线粒体的机能””逐渐向“线粒体与其他细胞器之间的相互作用”的方向转移。因此,对于线粒体的更详细的形态观察需求越来越大。

MitoBright IM Red克服了其他染料的靶向标记稳定性差的问题,是一种可以用于免疫荧光共染色线粒体荧光探针。

实验例:与内质网标记物KDEL的共染色

用MitoBrightIM Red标记HeLa细胞的线粒体,经固定化和膜透性处理后再用内质网标记物KDEL的抗体进行免疫共染色。并且在左图的箭头所示范围内进行了荧光强度的检测。从荧光图像可以清晰的观察线粒体与附近的内质网的形态。

image.png

<检测条件>

MitoBright IM Red (红) Ex: 561 nm,  Em: 560-620 nm

KDEL抗体-Alexa488 (绿) Ex: 488 nm, Em= 490-550 nm

Scale bar: 10 μm

MitoBright IM Red与其他试剂的不同

传统的小分子荧光染料在染色后的固定化操作或透膜剂处理后,往往会失去靶向性。而MitoBright IM Red与其他染料相比,提高了靶向稳定性,可以抑制免疫荧光实验时固定化操作造成的荧光强度减弱等问题。

・荧光强度差的比较

MitoBright IM与(T公司的)传统荧光染料相比,在活细胞线粒体染色后的固定化处理和透膜剂处理后的荧光强度如下图所示。固定化处理和透膜剂处理后,荧光强度都有一定的下降,但是MitoBright IM比传统染料的靶向标记稳定性更高,因此可以观察到更清晰的线粒体染色情况。

image.png

 

<检测条件>

Ex=561 nm; Em= 560-620 nm

・荧光背景的比较

使用线粒体标记物TOM20抗体比较MitoBrightIM和传统试剂的免疫染色后的线粒体定位情况。 用MitoBrightIM和传统试剂对HeLa细胞进行染色,然后用TOM20抗体进行二抗免疫荧光染色。 结果显示, 用MitoBrightIM或现有试剂对HeLa细胞进行染色,然后用TOM20抗体进行二抗染色。 结果显示,传统试剂有扩散到线粒体以外区域的情况,导致背景很高,而MitoBrightIM的背景更低,而且定位与TOM20抗体一致。

image.png

 

<检测条件>

Ex=561 nm; Em= 560-620 n

 

与传统试剂的对比

image.png

可检测的次数

MitoBright IM Red

规格

荧光显微镜
(35 mm dish,  working   solution 2 ml/dish时)
20 μl 10   枚
20 µl x3 30   枚

荧光特性

image.png

激发波长(λex) : 548 nm
发射波长(λem) : 566 nm

常见问题Q&A

Q: MitoBright IM Red出厂就是是DMSO溶液状态,反复冻融是否会影响染色结果?
我们做过反复冻融5次的稳定性实验,染色结果正常。如果长时间保存时需要反复冻融,保险起见建议提前分装,分开保存。
Q:先药物刺激再进行MitoBright IM染色时,发现有荧光辉斑产生,请问是否有好的解决办法?
A:请在药物刺激前进行MitoBright IM的染色。      由于本试剂是依靠线粒体膜电位在线粒体处积累的,如果线粒体膜电位大幅降低,会导致试剂无法在线粒体处聚集。

(参考实验)

分别采用“先FCCP刺激后染色” 和“先染色后FCCP刺激” 的方法对HeLa细胞进行实验并观察荧光。

先进行MitoBright IM染色再FCCP刺激的实验组很顺利的观察到了荧光,而相反的实验组没有观察到荧光。

1643262415810891.png

线粒体自噬—Mitophagy Detection Kit货号:MD01

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

选择规格:
1set
线粒体自噬检测
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

试剂盒内含

1622449707398455.png

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

1606369445891830.png

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

1606369473373528.png

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

1606285859232026.png

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

1606285997828942.png

Cellstain- MitoRed试剂货号:R237

Cellstain- MitoRed试剂货号:R237
9-[2-(4′-MethylcoumariN-7′-oxycarbonyl)phenyl]-3,6-bis(diethylamino)xanthylium chloride
Cellstain- MitoRed
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温
分子式:

C38H37ClN2O5

分子量:

637.17

特点:

● 基于膜电位对线粒体染色

● 红色荧光

● 激发和发射波长分别为560 nm和580 nm

选择规格:
50μg*8
线粒体检测方案

特性:该产物为品红色至紫棕色固体,可溶于二甲基亚砜和甲醇。

可溶于二甲基亚砜:试验成功

NMR光谱:试验适合

产品概述

MitoRed为基于罗丹明的可透过细胞膜的染料。它集中于线粒体内并发出红色荧光。MitoRed与线粒体的相互作用取决于线粒体的膜电位。

可用20-200 nM MitoRed对线粒体染色。MitoRed的激发和发射波长分别为560 nm和580 nm。

MitoRed.jpg

荧光特性

λex=560 nm, λem=580 nm

操作说明

染色步骤

1. 将50 µg MitoRed溶解到78 µl DMSO中制备成1 mM MitoRed-DMSO溶液。

2. 用载玻片准备细胞。细胞数目应为5×104-5×105个/ml。

3. 孵育该载玻片,用PBS或Hank’s液洗涤细胞。

4. 用培养基稀释1 mM MitoRed溶液以制备20-200 nM MitoRed缓冲液。

5. 将MitoRed缓冲液a) 加入载玻片并在37℃下孵育30分钟至1小时。

6. 去除MitoRed缓冲液并用培养基洗涤细胞。b)

7. 用带有罗丹明滤光片的荧光显微镜观察细胞。

a) 加入细胞前将MitoRed缓冲液放在37℃下孵育。

b) 洗涤细胞后为了固定,加入10%福尔马林缓冲液并孵育15-20分钟,接着用PBS洗涤。

1606881211185975.png

文献

1) R. Ikeda, T. Sugita, E. S.  Jacobson and T. Shinoda, “Effects of Melanin upon Susceptibility of  Cryptococcus to Antifungals”, Microbiol.  Immunol., 2003, 47(4),  271.

常见问题Q&A

Q1:如何使用Mito Red。
A1:

下面显示了一个使用HeLa细胞的示例。

*根据细胞类型和观察条件,有必要检查试剂浓度和染色条件。

<试剂>

-Cellstain®-MitoRed

二甲基亚砜

用DMSO 78μL→1 mmol / L溶液溶解MitoRed 50μg(1瓶)

<操作方法>

1.培养小室玻片上的细胞,以使细胞密度合适。

(1×105至1×106细胞/ mL)

2.除去培养基,并轻轻洗涤(培养基,PBS,Hank溶液等)。

用中等浓度将3.1 mmol / L的MitoRed溶液稀释至最终浓度为20-200 nmol / L。

(最好先将其在37°C的温度下保温,然后再添加到细胞中)

将稀释的MitoRed溶液加入孔中,并在培养条件下孵育大约30分钟至1小时。

4.除去MitoRed溶液,并用中性溶液洗涤。

5.在荧光显微镜G激发下观察。

(Λex= 560 nm,λem= 580 nm)

固定电池时,请执行以下(3)之后的操作。

4.除去MitoRed溶液并洗涤。

(无血清培养基,PBS,Hank溶液等)

5.用5.10%中性福尔马林缓冲液固定15至20分钟。

6.用PBS清洁。

7.在荧光显微镜下观察。

 

 

Q2:细胞染料的激发波长和发射波长是多少。

A2:

excel11.png

 

Q3:不管是活细胞还是死细胞,它都会染色细胞内线粒体吗?

 

A3:仅活细胞。它不能用于死细胞,因为线粒体的膜电位会丢失。

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
线粒体膜电位检测试剂盒
JC-1 MitoMP Detection Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 灵敏度高

● 易上手

● 多种仪器均可检测

选择规格:
1set
易溶解
可使用于各种仪器
专用成像缓冲液
更多线粒体检测方案(点击查看)

 

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    ROS Assay Kit    活性氧检测

NO.3.    FerroOrange    细胞亚铁离子检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

 

试剂盒内含

1609139988702345.png

产品概述

细胞中的线粒体作为有氧呼吸产生ATP的主要场所,是体内重要的细胞器之一,常被用于早期细胞毒性、氧化应激、细胞凋亡等研究中1)。线粒体活性的降低与机能失调,已被证实与癌症、衰老、神经退行性疾病 (如阿尔兹海默症、帕金森病等) 等密切相关2)3)

JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色 (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。以往的研究者反映,JC-1不易溶于水并有大量沉淀产生。但与其他公司的产品不同,同仁化学研究所研制的JC-1试剂解决了这一问题,避免了沉淀的产生。同时使用试剂盒中配制的成像缓冲液 (Imaging Buffer),可大幅降低荧光背景并在检测过程中保护细胞不受损伤。

当JC-1工作液的浓度为2 μmol/l, 每次用量为100 μl时,可以检测500次。

产品特点

1.为什么要检测线粒体膜电位

线粒体不仅是细胞内产生能量的场所,它还与癌症、衰老、阿尔兹海默症、帕金森等神经变异性疾病密切相关。因此,针对线粒体状态的研究非常重要,其中线粒体膜电位的变化经常被作为重要的指标之一检测。

当线粒体正常、膜电位差保持不变时,JC-1会聚集并发出红色荧光,而当膜电位降低时,JC-1会作为单体存在并发出绿色荧光。红色和绿色荧光强度的变化可以作为检测线粒体状态的指标。

1622686240109345.png

2.初次使用也很容易上手

1622685787216106.png

3.去极化的检测实例

使用去极化剂carbonylcyanide-p-trifluoromethoxyphenylhydrazone(FCCP)对HeLa细胞进行处理,用本试

剂盒进行检测。可以发现与未加药物的细胞相比,加药组细胞的红色荧光明显减少。

1606294523249551.png

实验条件

JC-1浓度: 2 μmol/l in MEM, 染色时间30 min

FCCP浓度:100 μmol/l, FCCP处理时间1 h

检测条件

Green : Ex 488 nm/ Em 500-550 nm;

Red : Ex 561 nm/ Em 560-610 nm;

标尺: 20 μm

操作步骤

1622686397951608.png

实验例

1.诱导凋亡的实验例

1.1 荧光显微镜

通过荧光颜色的改变判断由凋亡导致的线粒体膜电位的变化。

1606294576462329.png

检测条件

Green: Ex 488 nm / Em 500-550 nm

Red : Ex 561 nm / Em 560-610 nm

标尺: 80 μm

1.2 流式细胞仪

定量分析单个细胞的膜电位变化

1606294604378214.png

检测条件

Green: Ex 488 nm / Em 515-545 nm

Red : Ex 488 nm / Em 564-604 nm

1.3 酶标仪

确认孔板中吸光度来判断线粒体膜电位的变化

1608196394916701.png

检测条件

Green: Ex 485 nm / Em 525-545 nm

Red : Ex 535 nm / Em 585-605 nm

2.诱导自噬的实验例

使用表达Parkin的HeLa细胞,分别使用线粒体自噬试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit: MT09)来观察添加和不添加CCCP(羰基氰化物间氯苯)的线粒体状态的变化。

结果证明在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 而在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光的降低)和线粒体的自噬(Mtphagy染料的荧光的增强)。

<检测条件>

线粒体自噬检测

Ex:561 nm,Em:570-700 nm

线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

实验条件

1.将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

然后过夜培养,收集细胞进行以下检测。

2.自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。荧光显微镜下观察处理后的细胞。

3.线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作溶液使终浓度至2 μmol/l,并将细胞溶液在37℃下孵育30分钟。孵育后将细胞用HBSS洗涤,加入成像缓冲液,在荧光显微镜下观察细胞。

1606294718424606.png

3.线粒体膜电位与细胞周期关联性

将已知能在细胞周期的G2/M期起作用以终止细胞增殖并诱导细胞衰老的阿霉素(DOX)加入A549细胞后,

使用细胞周期检测试剂盒蓝色(产品代码:C549)/深红色(产品代码:C548)后检测。

结果证实了A549细胞的细胞周期确实发生了变化,同时用细胞衰老检测试剂盒–SPiDER-βGal(产品代码:SG03)证实了细胞产生衰老,实验证实了线粒体膜电位会发生变化。

1612339613332767.png

1622681451822025.png

参考文献

文献No. 检测对象 检测仪器 引用
1) 细胞(U2OS, HeLa) 荧光显微镜 T.     Namba, “BAP31 regulates mitochondrial function via   interaction with   Tom40 within ER-mitochondria contact sites   “, Sci   Adv., 2019, 5, (6), 1386.
2) 细胞(Neuron) 荧光显微镜 I.   Kawahata, L. Luc   Bousset, R. Melki and K.   Fukunaga , “Fatty   Acid-Binding Protein 3 is Critical   for α-Synuclein Uptake and MPP+-Induced   Mitochondrial Dysfunction in   Cultured Dopaminergic Neurons “, Int J   Mol   Sci., 2019, 20, 5358.
3) 细胞(3T3L1, C2C12) 流式细胞仪 M.   Kurano, K. Tsukamoto, T.   Shimizu, H. Kassai, K. Nakao, A. Aiba, M.   Hara and   Yatomi , “Protection Against Insulin   Resistance by   Apolipoprotein M/Sphingosine     1-Phosphate “, Diabetes, 2020, DOI:     10.2337/db19-0811.
4) 细胞 流式细胞仪 T.   Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D.   Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E.   Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J.   W. Tyner , “The TP53 Apoptotic Network Is   a Primary   Mediator of Resistance to BCL2 Inhibition in AML     Cells.”, Cancer Discov, 2019, 9,
5) 细胞 荧光显微镜 G.   Yang, M.   Fan, J. Zhu, C. Ling, L. Wu, X. Zhang, M. Zhang, J. Li, Q.   Yao, Z. Gu and X.   Cai, “A multifunctional anti-inflammatory   drug that can   specifically target activated   macrophages  massively deplete   intracellular H2O2 and   produce large amounts CO for a highly efficient   treatment of     osreoarthritis”  , Biomaterials, 2020,  doi:10.1016/j.biomaterials.2020.120155.
6) 细胞(ARPE-19) 荧光显微镜 J.   H. Quan, F. F. Gao, H.   A. Ismail, J. M.  Yuk, G. H. Cha, J. Q.   Chu and Y. H.   Lee,  “Silver Nanoparticle-Induced   Apoptosis in ARPE-19 Cells   Is Inhibited by Toxoplasma gondii   Pre-Infection Through Suppression of   NOX4-Dependent ROS   Generation”, Int J   Nanomedicine , 2020, 15,   3695–3716.

常见问题Q&A

Q1: 本试剂盒可以检测多少次?
A1:大概的使用次数请参考下表:
检测装置 容器 使用次数 液量
流式细胞仪 100次 0.5 ml/次
荧光显微镜
荧光酶标仪
35 mm dish 25次 2 ml/孔
8孔Chamber Slide 30次 200 μl/孔
96孔板 5次 100 μl/孔
Q2:在JC-1染色后,可以使用PBS代替HBSS洗涤吗?
A2:我们建议使用HBSS来减少对细胞的损伤。如果您手边没有HBSS的话,建议使用培养基洗净。
Q3:可以使用含血清的培养基吗?
A3:在清洗细胞和Working Solution中可以使用含血清的培养基。在观察荧光时建议使用Imaging Buffer。如果一定要使用含血清的培养基的话,建议不要加酚红。
Q4:染色后细胞固定或者固定后进行染色可以实现吗?
A4:细胞固定操作会使得线粒体去极化,所以染色前后均不能进行细胞固定。
 

Q5:处理后的样品与对照组相比较,红和绿两种荧光值都增加(或减少)了,结果该如何解释?

A5:请先比较实验组和对照组的荧光比值,两者相比,荧光比越低,线粒体膜电位越低。

用荧光之比进行结果分析的理由。

JC-1由于膜电位依存性地在细胞中积蓄,根据细胞的状态,每个细胞的JC-1的浓度有可能不同。

由于对照组和实验组处理样品的细胞状态不同,JC-1的累积浓度不同。)

另外,在线粒体膜电位较高的状态下,JC-1会聚集在一起,使荧光从绿色转移到红色。

该聚集体的量取决于膜电位的程度,因此可以用红/绿之比来比较样品之间的线粒体膜电位。

线粒体膜电位检测试剂盒货号:MT13

线粒体膜电位检测试剂盒货号:MT13
线粒体膜电位检测试剂盒
MT-1 MitoMP Detection Kit
商品信息
运输条件:室温

特点:

● 固定后仍可检测

● 荧光滞留性强

● 灵敏度高

选择规格:
1set
线粒体检测方案

产品概述

线粒体利用氧气合成ATP,从而产生细胞所需的能量,是重要的细胞器之一。线粒体活性低下和机能障碍与癌症、老化、阿尔茨海默病、帕金森病等神经变性疾病密切相关。因此,线粒体膜电位(MMP)作为线粒体相关疾病的一个有希望的靶点已被广泛研究。

产品特点

解决传统试剂的三个问题

观察线粒体膜电位时,使用JC-1、TMRE、TMRM,但由于PFA不可固定、容易淬灭,数据的再现性等问题。MT-1 MitoMP Detection Kit是克服了这些问题的线粒体膜电位的检测试剂。

并且,通过本试剂盒中包含的Imaging Buffer,可以在抑制了荧光背景和对细胞的损伤的状态下进行观察。

①固定后也可检测

由于微小的细胞状态的变化,也会造成线粒体膜电位发生变化,所以取得数据的重现性需要特别注意。通用的线粒体膜电位检测试剂(JC-1、TMRE)如果对细胞进行固定处理的话会失去荧光,所以需要使用活细胞进行迅速的测定。MT-1即使进行染色后进行PFA固定操作,也能保持荧光,因此可以进行高重复性的实验。

image.png

②可监控

没有进行药物刺激的细胞通过各种试剂染色,确认了荧光强度的变化。结果,JC-1和TMRE在染色后约10分钟左右荧光强度下降,MT-1仍保持了一定的荧光强度

1628652266603977.png

③高灵敏度

线粒体膜电位的细微变化在JC-1中有难以检测的情况,在这种情况下,使用四甲基罗丹明乙酯(TMRE)监测MMP。MT-1可提供与TMRE同等的检测灵敏度。

微信截图_20211125095556.png

与各种试剂的比较

image.png

实验例

1.通过去极化的实验例

通过线粒体去极化剂的cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)处理HeLa细胞,用该试剂观察膜电位的变化。

1637805445115649.png

结果,确认了FCCP处理的细胞线粒体膜电位下降的情况。

2.凋亡诱导细胞线粒体膜电位的变化

预先在MT-1中染色的HL60细胞中添加Etoposide,诱导凋亡后,与Annexin V、FITC Conjugate一同染色,并通过流式细胞仪检测。

1637805474892219.png

结果发现Annexin V-FITC产生的荧光强度变化(绿色荧光强度的增加)确认了凋亡的发生,以及从MT-1产生的荧光强度变化(红色荧光强度的降低)发现了线粒体膜电位的变化。

常见问题Q&A

Q1:使用荧光显微镜检测时需要注意什么?
A1:请尽量减少激发光照射时间并提高检测灵敏度。

细胞长期暴露于激发光内可能导致细胞损伤和荧光染料降解,请优化检测时间。

Q2:MT-1检测后可以固定吗?
A2:应使用4%多聚甲醛(PFA)固定,且不能与(Triton X-100、NP-40等)一起使用,因为这可能导致染泄漏。
Q3:固定后可以对细胞染色吗?
A3:由于MT-1在线粒体中的积累取决于线粒体膜电位,因此固定后不适用于染色。
Q4:是否需要做阳性对照?
A4:作为阳性对照,可在技术手册中找到使用FCCP(羰基氰化物-对三氟甲氧基苯腙)的实验例。
 

Q5:优化染色条件时,应使用何种浓度的MT-1染料

 

A5:MT-1染料的浓度建议稀释1000倍。但在优化染色条件时,请参考以下内容。

<荧光强度弱>

请优化以下浓度:稀释500-1000倍。

<观察到非特异性吸附>

请优化以下浓度:稀释1000至2000倍。

Q6:我可以使用缓冲液来制备MT-1工作溶液吗?
A6:可以使用Hanks的HEPES和HBSS。也可以使用MEM、RPMI和含10%FBS的MEM制备。
Q7:添加MT-1工作液后,可以不清洗直接上机检测吗?
A7:染色后,无需清洗即可观察样品。但我们不建议在不清洗的情况下长期观察它们,因为它们可能具有细胞毒性。

我们建议去除上清液并用培养基替换。

Q8:MT-1染色后,是否可以用PBS代替HBSS来清洗?
A8:我们建议使用HBSS来减少细胞损伤。如果您没有HBSS,我们建议使用培养基来代替清洗。

MitoBright LT Deep Red试剂货号:MT12

MitoBright LT Deep Red试剂货号:MT12
线粒体长效荧光探针-深红色
MitoBright LT Deep Red
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

● 荧光持续时间长

● 可在含血清培养基中染色

● 荧光显微镜、流式细胞仪均可检测

选择规格:
20 μl
400 μl
荧光长时间存在
可使用含血清培养基
荧光/流式检测
更多线粒体检测方案(点击查看)

 

产品概述

细胞内有各种各样的细胞器,承担着各种各样必须的生命活动。其中线粒体不仅是通过氧化磷酸化反应生成ATP 的场所,它还与癌症、细胞衰老、阿尔兹海默症、帕金森综合症等神经退行性疾病紧密相关,因此它是细胞内最重要的细胞器之一。

在对线粒体的形态和动态进行观察以及定量检测时,通常使用小分子荧光探针标记和荧光蛋白的基因转染两种方法。荧光蛋白的基因转染存在转染效率不稳定等情况,因此操作简便的小分子荧光探针的使用更为广泛。现在市面上销售的小分子荧光探针中,多为含有氯甲基的探针,该探针存在观察时间短,染色时不能使用含血清的培养基,染色后荧光背景高等问题。MitoBright LT 荧光探针克服了这些问题,可在线粒体内稳定存在一天以上,条件合适的情况下可达到一周。而且与含有氯甲基的探针相比,染色后的荧光强度更高。本品直接采用DMSO 溶液包装,可快速方便的进行线粒体染色。荧光颜色有Green, Red, Deep Red 等多种选择,可满足多重染色等各种各样的实验要求。

产品特点

1.可长时间在细胞内存在

用HBSS 清洗 HeLa 细胞后,分别用 MitoBright LT 和其他公司的试剂进行染色,更换含血清的培养基,培养 4 天后观察线粒体染色情况。其他公司的染色试剂在 4 天后荧光强度大幅降低,而 MitoBrightLT 依然维持着高荧光强度,并且在染色 7 日后依然可以观察到荧光。

1606295982240628.png

<检测条件>

MitoBright LT Green 、(T 公司)Green:Ex:488 nm/Em:500–560 nm

MitoBright LT Red 、(T 公司)Red:Ex 561:nm/Em:560–620 nm

MitoBright LT Deep Red 、(T 公司)Deep Red:Ex:640 nm/Em:650–700 nm

2.可以使用含血清培养基

用MitoBright LT 和其他公司试剂,分别用含有血清和不含血清的培养基染色。其他公司试剂在含有血清的培养基染色时,荧光明显减弱,而 MitoBright LT 在含有血清的培养基条件下,荧光没有减弱,可明显观察到线粒体的染色情况。

image.png

3.线粒体的分裂和融合

用100 nmol/l MitoBrightLT Red将HeLa细胞染色后,换入无血清培养基30分钟后观察线粒体形态。

上传111.gif

<检测仪器>

共聚焦显微镜,放大倍率:63倍

<检测条件>

Ex:561 nm/Em:560–620 nm

实验例

用流式细胞仪检测

1. 用RPMI 培养基(10% fetal bovine serum, 1% penicillin-streptomycin)配制Jurkat 细胞悬液(3.2×105cell/mL)播种于5 cm 培养皿,37℃,5% CO2 培养箱内培养一晚。

2. 去除培养基,加入MitoBright LT Working Solution (0.1 μmol/L, 5 mL), 37℃培养30 分钟。

3. 去除溶液,用 5mL 的PRPMI 培养基清洗细胞2 次。

4. 添加RPMI 培养基,持续培养细胞,每隔2 天用流式细胞仪检测。

image.png

在胶原蛋白涂覆玻璃板上观察线粒体荧光成像

胶原蛋白涂覆玻璃板通常用于线粒体形态的高倍放大观察。

现有的线粒体染色试剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright LT系列可以在不受背景影响的情况下清楚地对线粒体进行染色。

<染色条件>

将HeLa细胞接种在胶原蛋白涂覆玻璃板上,培养24小时,提取上清液并用HBSS洗涤。

加入100nmol / L的MitoBright LT Green工作溶液,培养30分钟后,提取上清液并用HBSS洗涤后用荧光显微镜观察。

<检测条件>

Ex488 nm,Em 500-560 nm

c5aa6b3e074b28c187d92b0c55517c29d6dcaedd.png

<结果>

现有的线粒体染色剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright  LT系列可以清晰地对线粒体染色,而不受背景影响。

通过超分辨率激光显微镜(STED)观察线粒体内部构造

线粒体疾病致突变的Cybrid细胞用MitoBright-LT-Deep Red染色,用超分辨激光显微镜(STED)观察,证实线粒体嵴结构异常。

1612667766216605.png

<实验条件>

色素:MitoBrightLT Deep Red(100nmol/l)

仪器:Leica超分辨率激光显微镜TCS SP8 STED 3X

Ex. 640 nm / Em. 650-700 nm

STED激光:775nm

 

<实验步骤>

1将细胞接种在玻璃培养皿中,培养2天(37℃,5% CO2)。

2去除培养基后,加入使用L-15培养基(含10%FBS)制备的MitoBrightLT Deep Red(100nmol/l)工作液。

3孵育45分钟(37度,5% CO2)。

4去除上清液,用HBSS清洗两次。

5加入L-15培养基(含10%FBS),通过超分辨率激光显微镜(Leica TCS SP8 STED)进行观察。

以上数据由东京都老年学研究所衰老控制研究小组的大澤郁朗博士和藤田泰典博士友情提供。

产品论文

同仁化学研究所开发的线粒体长效染色荧光探针MitoBright LT系列在世界范围内广受科研人员的好评。在上市后的很短时间内,就出现了多篇使用MitoBright LT系列探针的论文,下面收集整理了部分的论文,其中红色字体标记的是使用本产品标记线粒体后,长时间(最长至5天)观察线粒体动态的报道,供感兴趣的科研人员参考。

 

荧光特性

MitoBright LT 染料的荧光特性

image.png

常见问题Q&A

Q1:MitoBright LT需要用DMSO溶液配制,反复冻结融化也不会影响试剂质量吗?
A1:我们已经确认可以使用冻融30次的溶液进行染色。
Q2:MitoBright LT和MitoBright的区别。
A2:MitoBright LT是MitoBright具有更强细胞内滞留性性能的产品。另外MitoBright LT是溶于DMSO的产品,可以立即使用,而无需准备染色溶液。

image.png

 

Q3:用MitoBright LT系列染色后再去极化是否会影响染色效果?

A3:我们确认了去极化和细胞种类对于染色效果的影响,MitoBright LT的每种染料都有不同程度的影响。作为参考,本公司将HeLa细胞用不同的MitoBrightLT试剂进行染色,在以下条件下进行去极化处理,观察荧光染色的变化。

<染色条件>

HeLa细胞用MitoBright LT(100 μmol/l,孵育30分钟)染色,并用HBSS洗涤。

用FCCP(100 μmol/l,孵育60分钟)处理,用HBSS洗涤2次,然后观察荧光。

image.png

 

<检测条件>

MitoBright LT Green         :Ex 488 nm/Em 500–560 nm

MitoBright LT Red            :Ex 561 nm/Em 560–620 nm

MitoBright LT Deep Red     :Ex 640 nm/Em 650–700 nm

规格性状

性状:本品是黄色液体

吸光度:0.600~0.800(490 nm附近)

MitoBright LT Red试剂货号:MT11

MitoBright LT Red试剂货号:MT11
线粒体长效荧光探针-红色
MitoBright LT Red
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

● 荧光持续时间长

● 可在含血清培养基中染色

● 荧光显微镜、流式细胞仪均可检测

选择规格:
20 μl
400 μl
荧光长时间存在
可使用含血清培养基
荧光/流式检测
更多线粒体检测方案(点击查看)

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    MitoPeDPP    线粒体内脂质过氧化物检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    ROS Assay Kit -Highly Sensitive DCFH-DA-    ROS检测

NO.5.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

产品概述

细胞内有各种各样的细胞器,承担着各种各样必须的生命活动。其中线粒体不仅是通过氧化磷酸化反应生成ATP 的场所,它还与癌症、细胞衰老、阿尔兹海默症、帕金森综合症等神经退行性疾病紧密相关,因此它是细胞内最重要的细胞器之一。

在对线粒体的形态和动态进行观察以及定量检测时,通常使用小分子荧光探针标记和荧光蛋白的基因转染两种方法。荧光蛋白的基因转染存在转染效率不稳定等情况,因此操作简便的小分子荧光探针的使用更为广泛。现在市面上销售的小分子荧光探针中,多为含有氯甲基的探针,该探针存在观察时间短,染色时不能使用含血清的培养基,染色后荧光背景高等问题。MitoBright LT 荧光探针克服了这些问题,可在线粒体内稳定存在一天以上,条件合适的情况下可达到一周。而且与含有氯甲基的探针相比,染色后的荧光强度更高。本品直接采用DMSO 溶液包装,可快速方便的进行线粒体染色。荧光颜色有Green, Red, Deep Red 等多种选择,可满足多重染色等各种各样的实验要求。

产品特点

image.png

1.可长时间在细胞内存在

用HBSS 清洗 HeLa 细胞后,分别用 MitoBright LT 和其他公司的试剂进行染色,更换含血清的培养

基,培养4天后观察线粒体染色情况。其他公司的染色试剂在4天后荧光强度大幅降低,而MitoBright

LT 依然维持着高荧光强度,并且在染色7日后依然可以观察到荧光。

image.png

<检测条件>

MitoBright LT Green 、(T 公司)Green:Ex:488 nm/Em:500–560 nm

MitoBright LT Red 、(T 公司)Red:Ex:561 nm/Em:560–620 nm

MitoBright LT Deep Red 、(T 公司)Deep Red:Ex:640 nm/Em:650–700 nm

2.可以使用含血清培养基

用MitoBright LT 和其他公司试剂,分别用含有血清和不含血清的培养基染色。其他公司试剂在含有血清的培养基染色时,荧光明显减弱,而 MitoBright LT 在含有血清的培养基条件下,荧光没有减弱,可明显观察到线粒体的染色情况。

image.png

3.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

实验例

用流式细胞仪检测

1. 用RPMI 培养基(10% fetal bovine serum, 1% penicillin-streptomycin)配制Jurkat 细胞悬液(3.2×105cell/ml)播种于5 cm 培养皿,37℃,5% CO2培养箱内培养一晚。

2. 去除培养基,加入MitoBright LT Working Solution (0.1 μmol/L,5 ml), 37℃培养30 分钟。

3. 去除溶液,用 5mL 的PRPMI 培养基清洗细胞2次。

4. 添加RPMI培养基,持续培养细胞,每隔2天用流式细胞仪检测。

image.png

在胶原蛋白涂覆玻璃板上观察线粒体荧光成像

胶原蛋白涂覆玻璃板通常用于线粒体形态的高倍放大观察。

现有的线粒体染色试剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright LT系列可以在不受背景影响的情况下清楚地对线粒体进行染色。

<染色条件>

将HeLa细胞接种在胶原蛋白涂覆玻璃板上,培养24小时,提取上清液并用HBSS洗涤。

加入100nmol / L的MitoBright LT Green工作溶液,培养30分钟后,提取上清液并用HBSS洗涤后用荧光显微镜观察。

<检测条件>

Ex:488 nm,Em:500-560 nm

Red75.png

<结果>

现有的线粒体染色剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright  LT系列可以清晰地对线粒体染色,而不受背景影响。

通过超分辨率激光显微镜(STED)观察线粒体内部构造

线粒体疾病致突变的Cybrid细胞用MitoBright-LT-Deep Red染色,用超分辨激光显微镜(STED)观察,证实线粒体嵴结构异常。

1612667766216605.png

<实验条件>

色素:MitoBrightLT Deep Red(100 nmol/l)

仪器:Leica超分辨率激光显微镜TCS SP8 STED 3X

Ex:640 nm / Em: 650-700 nm

STED激光:775nm

 

<实验步骤>

1将细胞接种在玻璃培养皿中,培养2天(37℃,5% CO2)。

2去除培养基后,加入使用L-15培养基(含10%FBS)制备的MitoBrightLT Deep Red(100 nmol/l)工作液。

3孵育45分钟(37度,5% CO2)。

4去除上清液,用HBSS清洗两次。

5加入L-15培养基(含10%FBS),通过超分辨率激光显微镜(Leica TCS SP8 STED)进行观察。

以上数据由东京都老年学研究所衰老控制研究小组的大澤郁朗博士和藤田泰典博士友情提供。

产品文献

同仁化学研究所开发的线粒体长效染色荧光探针MitoBright LT系列在世界范围内广受科研人员的好评。在上市后的很短时间内,就出现了多篇使用MitoBright LT系列探针的论文,下面收集整理了部分的论文,其中红色字体标记的是使用本产品标记线粒体后,长时间(最长至5天)观察线粒体动态的报道,供感兴趣的科研人员参考。

MitoBright LT 染料的荧光特性

image.png

常见问题Q&A

Q1:MitoBright LT需要用DMSO溶液配制,反复冻结融化也不会影响试剂质量吗?
A1:我们已经确认可以使用冻融30次的溶液进行染色。
Q2:MitoBright LT和MitoBright的区别。
A2:MitoBright LT是MitoBright具有更强细胞内滞留性性能的产品。另外MitoBright LT是溶于DMSO的产品,可以立即使用,而无需准备染色溶液。

image.png

 

Q3:用MitoBright LT系列染色后再去极化是否会影响染色效果?

A3:我们确认了去极化和细胞种类对于染色效果的影响,MitoBright LT的每种染料都有不同程度的影响。作为参考,本公司将HeLa细胞用不同的MitoBrightLT试剂进行染色,在以下条件下进行去极化处理,观察荧光染色的变化。

<染色条件>

HeLa细胞用MitoBright LT(100 μmol/l,孵育30分钟)染色,并用HBSS洗涤。

用FCCP(100 μmol/l,孵育60分钟)处理,用HBSS洗涤2次,然后观察荧光。

image.png

 

<检测条件>

MitoBright LT Green         :Ex 488 nm/Em 500–560 nm

MitoBright LT Red            :Ex 561 nm/Em 560–620 nm

MitoBright LT Deep Red     :Ex 640 nm/Em 650–700 nm

规格性状

性状:本品是黄色液体

吸光度:0.600~0.800(490 nm附近)

MitoBright LT Green试剂,MT10,同仁化学Dojindo日本原装进口

MitoBright LT Green试剂货号:MT10
线粒体长效荧光探针-绿色
MitoBright LT Green
商品信息
储存条件:-20度保存
运输条件:室温

特点:

● 荧光持续时间长

● 可在含血清培养基中染色

● 荧光显微镜、流式细胞仪均可检测

选择规格:
20 μl
400 μl
荧光长时间存在
可使用含血清培养基
荧光/流式检测
更多线粒体检测方案(点击查看)

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Mitophagy Detection Kit    线粒体自噬检测

NO.2.    FerroOrange    细胞亚铁离子检测

NO.3.    DALGreen – Autophagy Detection    细胞自噬检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Lactate Assay Kit-WST    酸检测

 

产品概述

细胞内有各种各样的细胞器,承担着各种各样必须的生命活动。其中线粒体不仅是通过氧化磷酸化反应生成ATP的场所,它还与癌症、细胞衰老、阿尔兹海默症、帕金森综合症等神经退行性疾病紧密相关,因此它是细胞内最重要的细胞器之一。

在对线粒体的形态和动态进行观察以及定量检测时,通常使用小分子荧光探针标记和荧光蛋白的基因转染两种方法。荧光蛋白的基因转染存在转染效率不稳定等情况,因此操作简便的小分子荧光探针的使用更为广泛。现在市面上销售的小分子荧光探针中,多为含有氯甲基的探针,该探针存在观察时间短,染色时不能使用含血清的培养基,染色后荧光背景高等问题。MitoBright LT荧光探针克服了这些问题,可在线粒体内稳定存在一天以上,条件合适的情况下可达到一周。而且与含有氯甲基的探针相比,染色后的荧光强度更高。本品直接采用DMSO溶液包装,可快速方便的进行线粒体染色。荧光颜色有Green, Red, Deep Red等多种选择,可满足多重染色等各种各样的实验要求。

产品特点

image.png

1.可长时间在细胞内存在

用HBSS清洗HeLa细胞后,分别用MitoBright LT和其他公司的试剂进行染色,更换含血清的培养基,培养4天后观察线粒体染色情况。其他公司的染色试剂在4天后荧光强度大幅降低,而MitoBright LT依然维持着高荧光强度,并且在染色7日后依然可以观察到荧光。

1606295982240628.png

<检测条件>

MitoBright LT Green 、(T公司)Green:Ex 488 nm/Em 500–560 nm

MitoBright LT Red 、(T公司)Red:Ex 561 nm/Em 560–620 nm

MitoBright LT Deep Red 、(T公司)Deep Red:Ex 640 nm/Em 650–700 nm

2.可以使用含血清培养基

用MitoBright LT和其他公司试剂,分别用含有血清和不含血清的培养基染色。其他公司试剂在含有血清的培养基染色时,荧光明显减弱,而MitoBright LT在含有血清的培养基条件下,荧光没有减弱,可明显观察到线粒体的染色情况。

image.png

实验例

 

实时荧光观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

用流式细胞仪检测

1. 用RPMI培养基(10% Fetal Bovine Serum, 1% Penicillin-Streptomycin)配制Jurkat细胞悬液(3.2×105cell/ml)接种于5 cm培养皿中,在37℃,5% CO2培养箱内过夜培养。

2. 去除培养基,加入MitoBright LT Working Solution (0.1 μmol/l, 5 ml), 在37℃培养30分钟。

3. 去除溶液,用 5 ml的PRPMI培养基清洗细胞2 次。

4. 更换RPMI培养基,持续培养细胞,每隔2 天用流式细胞仪检测。

image.png

 MitoBright LT Green                                   MitoBright LT Red                                     MitoBright LT Deep Red

                        Excitation: 488 nm                                      Excitation: 488 nm                                     Excitation: 633 nm      

                        Emission: 515-545 nm                                Emission: 564-604 nm                               Emission: 650-670 nm

在胶原蛋白涂覆玻璃板上观察线粒体荧光成像

胶原蛋白涂覆玻璃板通常用于线粒体形态的高倍放大观察。

现有的线粒体染色试剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright LT系列可以在不受背景影响的情况下清楚地对线粒体进行染色。

<染色条件>

将HeLa细胞接种在胶原蛋白涂覆玻璃板上,培养24小时,提取上清液并用HBSS洗涤。

加入100 nmol/l的MitoBright LT Green工作溶液,培养30分钟后,提取上清液并用HBSS洗涤后用荧光显微镜观察。

<检测条件>

Ex 488 nm,Em 500-560 nm

image.png

<结果>

现有的线粒体染色剂存在吸附胶原蛋白和升高背景的问题,但是MitoBright  LT系列可以清晰地对线粒体染色,而不受背景影响。

通过超分辨率激光显微镜(STED)观察线粒体内部构造

线粒体疾病致突变的Cybrid细胞用MitoBright-LT-Deep Red染色,用超分辨激光显微镜(STED)观察,证实线粒体嵴结构异常。

1612667766216605.png

<实验条件>

色素:MitoBrightLT Deep Red(100 nmol/l)

仪器:Leica超分辨率激光显微镜TCS SP8 STED 3X

Ex. 640 nm / Em. 650-700 nm

STED激光:775nm

 

<实验步骤>

1将细胞接种在玻璃培养皿中,培养2天(37℃,5% CO2)。

2去除培养基后,加入使用L-15培养基(含10%FBS)制备的MitoBrightLT Deep Red(100 nmol/l)工作液。

3孵育45分钟(37度,5% CO2)。

4去除上清液,用HBSS清洗两次。

5加入L-15培养基(含10%FBS),通过超分辨率激光显微镜(Leica TCS SP8 STED)进行观察。

以上数据由东京都老年学研究所衰老控制研究小组的大澤郁朗博士和藤田泰典博士友情提供。

产品文献

同仁化学研究所开发的线粒体长效染色荧光探针MitoBright LT系列在世界范围内广受科研人员的好评。在上市后的很短时间内,就出现了多篇使用MitoBright LT系列探针的论文,下面收集整理了部分的论文,其中红色字体标记的是使用本产品标记线粒体后,长时间(最长至5天)观察线粒体动态的报道,供感兴趣的科研人员参考。

 

产品名 检测样品 染色后的
观察时间
检测仪器 发表期刊(含原文链接) 影响因子
MitoBright   LT Green 细胞 (U251) 立即 荧光显微镜 Pharmaceuticals 4.286
MitoBright   LT Green 酵母 (Lipomyces starkeyi) 立即 荧光显微镜 Genes to Cells 1.655
MitoBright   LT Green 细胞 (HeLa) 立即 荧光酶标仪 Biomaterials 10.317
MitoBright   LT Green 细胞 (Naive CD4+ T cells) 立即 荧光显微镜 Cell Reports 9.423
MitoBright   LT Green 细胞 (CT26) 立即 流式细胞仪 Journal of Radiation Research 2.841
MitoBright   LT Green 细胞 (C2C12) 5 天 荧光显微镜 Polymers 4.329
MitoBright   LT Green 细胞 (BMM) 36 小时 or

3 天

荧光显微镜/
流式细胞仪
JCI Insights 8.315
MitoBright   LT Green 细胞 (mouse erythrocytes) 立即 荧光显微镜 Front.   Cell. Infect. Microbiol. 5.293
MitoBright   LT Red 细胞 (SH-SY5Y) 立即 荧光显微镜 Free Radical Biol.   Med. 7.376
MitoBright   LT Red 细胞 (MRC-5) 立即 荧光显微镜 The   FEBS Journal 5.542
MitoBright   LT Red 细胞 (A11   cells/ P29 cells) 3 天 荧光显微镜 BMC Mol. Cell Biol. 5.293
MitoBright   LT Deep Red 细胞 (HT-1080;   MCF-10A; MCF-7; HCT-116 ) 立即 荧光显微镜 Small 13.281
MitoBright   LT Deep Red 细胞 (HT-1080;   MCF-10A; MCF-7 ) 8 小时 荧光显微镜 Advanced Therapeutics
MitoBright   LT Deep Red 细胞 (4T1) 24 小时  荧光显微镜 Advanced Functional Materials 18.808
MitoBright   LT Deep Red 细胞 (SW982) 立即 荧光显微镜 Gene 3.368

 

荧光特性

MitoBright LT 染料的荧光特性

image.png

常见问题Q&A

Q1:MitoBright LT需要用DMSO溶液配制,反复冻结融化也不会影响试剂质量吗?
A1:我们已经确认可以使用冻融30次的溶液进行染色。
Q2:MitoBright LT和MitoBright的区别。
A2:MitoBright LT是MitoBright具有更强细胞内滞留性性能的产品。另外MitoBright LT是溶于DMSO的产品,可以立即使用,而无需准备染色溶液。

image.png

 

Q3:用MitoBright LT系列染色后再去极化是否会影响染色效果?

A3:我们确认了去极化和细胞种类对于染色效果的影响,MitoBright LT的每种染料都有不同程度的影响。作为参考,本公司将HeLa细胞用不同的MitoBrightLT试剂进行染色,在以下条件下进行去极化处理,观察荧光染色的变化。

<染色条件>

HeLa细胞用MitoBright LT(100 μmol/l,孵育30分钟)染色,并用HBSS洗涤。

用FCCP(100 μmol/l,孵育60分钟)处理,用HBSS洗涤2次,然后观察荧光。

image.png

 

<检测条件>

MitoBright LT Green         :Ex 488 nm/Em 500–560 nm

MitoBright LT Red            :Ex 561 nm/Em 560–620 nm

MitoBright LT Deep Red     :Ex 640 nm/Em 650–700 nm

规格性状

性状:本品是黄色液体

吸光度:0.600~0.800(490 nm附近)

MitoBright IM Red for Immunostaining试剂,MT15,同仁化学Dojindo日本原装进口

MitoBright IM Red for Immunostaining试剂货号:MT15
免疫荧光用线粒体荧光染料
MitoBright IM Red for Immunostaining
商品信息
储存条件:-20度保存
运输条件:室温

特点:

● 标记稳定性强、特异性高

● 可用于免疫荧光共染色

20μl
20μl*3
可在含血清的培养基中染色
规格性状
产品概述
实验例:与内质网标记物KDEL的共染色
MitoBright IM Red与其他试剂的不同
与传统试剂的对比
可检测的次数
荧光特性
常见问题Q&A

规格性状

image.png

产品概述

线粒体不仅是细胞中产生能量的场所,也是与癌症、衰老、神经退行性疾病(例如,阿尔茨海默症、帕金森症)等密切相关的最重要的细胞器之一。

近年来,随着显微镜技术的发展,有关细胞器的研究正在由原来的“单独研究线粒体的机能””逐渐向“线粒体与其他细胞器之间的相互作用”的方向转移。因此,对于线粒体的更详细的形态观察需求越来越大。

MitoBright IM Red克服了其他染料的靶向标记稳定性差的问题,是一种可以用于免疫荧光共染色线粒体荧光探针。

实验例:与内质网标记物KDEL的共染色

用MitoBrightIM Red标记HeLa细胞的线粒体,经固定化和膜透性处理后再用内质网标记物KDEL的抗体进行免疫共染色。并且在左图的箭头所示范围内进行了荧光强度的检测。从荧光图像可以清晰的观察线粒体与附近的内质网的形态。

image.png

<检测条件>

MitoBright IM Red (红) Ex: 561 nm,  Em: 560-620 nm

KDEL抗体-Alexa488 (绿) Ex: 488 nm, Em= 490-550 nm

Scale bar: 10 μm

MitoBright IM Red与其他试剂的不同

传统的小分子荧光染料在染色后的固定化操作或透膜剂处理后,往往会失去靶向性。而MitoBright IM Red与其他染料相比,提高了靶向稳定性,可以抑制免疫荧光实验时固定化操作造成的荧光强度减弱等问题。

 

 

・荧光强度差的比较

MitoBright IM与(T公司的)传统荧光染料相比,在活细胞线粒体染色后的固定化处理和透膜剂处理后的荧光强度如下图所示。固定化处理和透膜剂处理后,荧光强度都有一定的下降,但是MitoBright IM比传统染料的靶向标记稳定性更高,因此可以观察到更清晰的线粒体染色情况。

image.png

 

<检测条件>

Ex=561 nm; Em= 560-620 nm

・荧光背景的比较

使用线粒体标记物TOM20抗体比较MitoBrightIM和传统试剂的免疫染色后的线粒体定位情况。 用MitoBrightIM和传统试剂对HeLa细胞进行染色,然后用TOM20抗体进行二抗免疫荧光染色。 结果显示, 用MitoBrightIM或现有试剂对HeLa细胞进行染色,然后用TOM20抗体进行二抗染色。 结果显示,传统试剂有扩散到线粒体以外区域的情况,导致背景很高,而MitoBrightIM的背景更低,而且定位与TOM20抗体一致。

image.png

 

<检测条件>

Ex=561 nm; Em= 560-620 n

 

与传统试剂的对比

image.png

可检测的次数

MitoBright IM Red

规格

荧光显微镜
(35 mm dish,  working   solution 2 ml/dish时)
20 μl 10   枚
20 µl x3 30   枚

荧光特性

image.png

激发波长(λex) : 548 nm
发射波长(λem) : 566 nm

常见问题Q&A

Q: MitoBright IM Red出厂就是是DMSO溶液状态,反复冻融是否会影响染色结果?
我们做过反复冻融5次的稳定性实验,染色结果正常。如果长时间保存时需要反复冻融,保险起见建议提前分装,分开保存。
Q:先药物刺激再进行MitoBright IM染色时,发现有荧光辉斑产生,请问是否有好的解决办法?
A:请在药物刺激前进行MitoBright IM的染色。      由于本试剂是依靠线粒体膜电位在线粒体处积累的,如果线粒体膜电位大幅降低,会导致试剂无法在线粒体处聚集。

(参考实验)

分别采用“先FCCP刺激后染色” 和“先染色后FCCP刺激” 的方法对HeLa细胞进行实验并观察荧光。

先进行MitoBright IM染色再FCCP刺激的实验组很顺利的观察到了荧光,而相反的实验组没有观察到荧光。

1643262415810891.png